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Preface

The third edition of Antenna Theory is designed to meet the needs of electrical engi-
neering and physics students at the senior undergraduate and beginning graduate levels,
and those of practicing engineers. The text presumes that the students have knowledge
of basic undergraduate electromagnetic theory, including Maxwell’s equations and the
wave equation, introductory physics, and differential and integral calculus. Mathemat-
ical techniques required for understanding some advanced topics in the later chapters
are incorporated in the individual chapters or are included as appendices.

The third edition has maintained all of the attractive features of the first two edi-
tions, including the three-dimensional graphs to display the radiation characteristics of
antennas, especially the amplitude patterns. This feature was hailed as an innovative
and first of its kind addition in a textbook on antennas. Additional graphs have been
added to illustrate features of the radiation characteristics of some antennas. However,
there have been many new features added to this edition. In particular,

e A new chapter on Smart Antennas (Chapter 16)
e A section on Fractal Antennas (Section 11.6)
o Summary tables of important equations in the respective chapters (Chapters 2, 4,
5,6, 12-14)
o New figures, photos, and tables
o Additional end-of-the-chapter problems
o CD with the following Multimedia Material:
e Power Point view graphs of lecture notes for each chapter, in multicolor
o End-of-the-chapter Interactive Questionnaires for review (40—65 for each chap-
ter) based on Java
e Animations based on Java
e Applets based on Java
o MATLAB programs translated from the FORTRAN programs of the second
edition
o A number of new MATLAB programs
e FORTRAN programs from the second edition.
The CD is attached to the book, and it will open automatically once inserted in
the computer. It is highly recommended that the reader uses the Internet Explorer
(IE) to open the Multimedia Material; other browsers may not perform well. For

additional instructions on how to open and use the material in the CD, there is a
HELP file in the CD.

xiii



Xiv PREFACE

The book’s main objective is to introduce, in a unified manner, the fundamental princi-
ples of antenna theory and to apply them to the analysis, design, and measurements of
antennas. Because there are so many methods of analysis and design and a plethora of
antenna structures, applications are made to some of the most basic and practical con-
figurations, such as linear dipoles; loops; arrays; broadband, and frequency-independent
antennas; aperture antennas; horn antennas; microstrip antennas; and reflector antennas.

A tutorial chapter on Smart Antennas has been included to introduce the student in
a technology that will advance antenna theory and design, and revolutionize wireless
communications. It is based on antenna theory, digital signal processing, networks and
communications. MATLAB simulation software has also been included, as well as a
plethora of references for additional reading.

Introductory material on analytical methods, such as the Moment Method and
Fourier transform (spectral) technique, is also included. These techniques, together with
the fundamental principles of antenna theory, can be used to analyze and design almost
any antenna configuration. A chapter on antenna measurements introduces state-of-the-
art methods used in the measurements of the most basic antenna characteristics (pattern,
gain, directivity, radiation efficiency, impedance, current, and polarization) and updates
progress made in antenna instrumentation, antenna range design, and scale modeling.
Techniques and systems used in near- to far-field measurements and transformations
are also discussed.

A sufficient number of topics have been covered, some for the first time in an under-
graduate text, so that the book will serve not only as a text but also as a reference for the
practicing and design engineer and even the amateur radio buff. These include design
procedures, and associated computer programs, for Yagi—Uda and log-periodic arrays,
horns, and microstrip patches; synthesis techniques using the Schelkunoff, Fourier
transform, Woodward—Lawson, Tschebyscheff, and Taylor methods; radiation charac-
teristics of corrugated, aperture-matched, and multimode horns; analysis and design
of rectangular and circular microstrip patches; and matching techniques such as the
binomial, Tschebyscheff, T-, gamma, and omega matches.

The text contains sufficient mathematical detail to enable the average undergraduate
electrical engineering and physics students to follow, without too much difficulty,
the flow of analysis and design. A certain amount of analytical detail, rigor, and
thoroughness allows many of the topics to be traced to their origin. My experiences as
a student, engineer, and teacher have shown that a text for this course must not be a
book of unrelated formulas, and it must not resemble a “cookbook.” This book begins
with the most elementary material, develops underlying concepts needed for sequential
topics, and progresses to more advanced methods and system configurations. Each
chapter is subdivided into sections or subsections whose individual headings clearly
identify the antenna characteristic(s) discussed, examined, or illustrated.

A distinguished feature of this book is its three-dimensional graphical illustrations
from the first edition, which have been expanded and supplemented in the second
and third editions. In the past, antenna texts have displayed the three-dimensional
energy radiated by an antenna by a number of separate two-dimensional patterns. With
the advent and revolutionary advances in digital computations and graphical displays,
an additional dimension has been introduced for the first time in an undergraduate
antenna text by displaying the radiated energy of a given radiator by a single three-
dimensional graphical illustration. Such an image, formed by the graphical capabilities
of the computer and available at most computational facilities, gives a clear view of
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the energy radiated in all space surrounding the antenna. It is hoped that this will lead
to a better understanding of the underlying principles of radiation and provide a clearer
visualization of the pattern formation in all space.

In addition, there is an abundance of general graphical illustrations, design data,
references, and an expanded list of end-of-the chapter problems. Many of the principles
are illustrated with examples, graphical illustrations, and physical arguments. Although
students are often convinced that they understand the principles, difficulties arise when
they attempt to use them. An example, especially a graphical illustration, can often
better illuminate those principles. As they say, “a picture is worth a thousand words.”

Numerical techniques and computer solutions are illustrated and encouraged. A
number of MATLAB computer programs are included in the CD attached to the book.
Each program is interactive and prompts the user to enter the data in a sequential man-
ner. Some of these programs are translations of the FORTRAN ones that were included
in the first and second editions. However, many new ones have been developed. Every
chapter, other than Chapters 3 and 17, have at least one MATLAB computer program;
some have as many as four. The outputs of the MATLAB programs include graphical
illustrations and tabulated results. For completeness, the FORTRAN computer pro-
grams are also included, although there is not as much interest in them. The computer
programs can be used for analysis and design. Some of them are more of the design
type while some of the others are of the analysis type. Associated with each program
there is a READ ME file, which summarizes the respective program.

The purpose of the Lecture Notes is to provide the instructors a copy of the text
figures and some of the most important equations of each chapter. They can be used by
the instructors in their lectures but need to be supplemented with additional narratives.
The students can use them to listen to the instructors’ lectures, without having to take
detailed notes, but can supplement them in the margins with annotations from the
lectures. Each instructor will use the notes in a different way.

The Interactive Questionnaires are intended as reviews of the material in each
chapter. The student can use them to review for tests, exams, and so on. For each ques-
tion, there are three possible answers, but only one is correct. If the reader chooses
one of them and it the correct answer, it will so indicate. However, if the chosen
answer is the wrong one, the program will automatically indicate the correct answer.
An explanation button is provided, which gives a short narrative on the correct answer
or indicates where in the book the correct answer can be found.

The Animations can be used to illustrate some of the radiation characteristics, such
as amplitude patterns, of some antenna types, like line sources, dipoles, loops, arrays,
and horns. The Applets cover more chapters and can be used to examine some of the
radiation characteristics (such as amplitude patterns, impedance, bandwidth, etc.) of
some of the antennas. This can be accomplished very rapidly without having to resort
to the MATLAB programs, which are more detailed.

For course use, the text is intended primarily for a two-semester (or two- or three-
quarter) sequence in antenna theory. The first course should be given at the senior
undergraduate level, and should cover most of the material in Chapters 1 through 7,
and Chapters 16 and 17. The material in Chapters 8 through 16 should be covered in a
beginning graduate-level course. Selected chapters and sections from the book can be
covered in a single semester, without loss of continuity. However, it is almost essential
that most of the material in Chapters 2 through 6 be covered in the first course and
before proceeding to any more advanced topics. To cover all the material of the text
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in the proposed time frame would be, in some cases, a very ambitious task. Sufficient
topics have been included, however, to make the text complete and to give the teacher
the flexibility to emphasize, deemphasize, or omit sections or chapters. Some of the
chapters and sections can be omitted without loss of continuity.

In the entire book, an ¢/“! time variation is assumed, and it is suppressed. The Inter-
national System of Units, which is an expanded form of the rationalized MKS system,
is used in the text. In some cases, the units of length are in meters (or centimeters)
and in feet (or inches). Numbers in parentheses () refer to equations, whereas those in
brackets [] refer to references. For emphasis, the most important equations, once they
are derived, are boxed. In some of the basic chapters, the most important equations
are summarized in tables.

I would like to acknowledge the invaluable suggestions from all those that con-
tributed to the first and second editions, too numerous to mention here. Their names
and contributions are stated in the respective editions. It is a pleasure to acknowl-
edge the invaluable suggestions and constructive criticisms of the reviewers of the
third edition: Dr. Stuart A. Long of University of Houston, Dr. Christos Christodoulou
of University of New Mexico, Dr. Leo Kempel of Michigan State, and Dr. Sergey
N. Makarov of Worcester Polytechnic University. There have been many other con-
tributors to this edition, and their contributions are valued and acknowledged. Many
graduate and undergraduate students from Arizona State University who have written
many of the MATLAB computer programs. Some of these programs were translated
from the FORTRAN ones, which appeared in the first and second editions. How-
ever a number of entirely new MATLAB programs have been created, which are
included for the first time, and do not have a FORTRAN counterpart. The name(s)
of the individual contributors to each program is included in the respective program.
The author acknowledges Dr. Sava V. Savov of Technical University of Varna, Bul-
garia, for the valuable discussions, contributions and figures related to the integration
of equation (5-59) in closed form in terms of Bessel functions; Dr. Yahya Rahmat-
Samii and Dr. John P. Gianvittorio of UCLA for the figures on Fractal antennas. I
would like to thank Craig R. Birtcher of Arizona State University for proofreading
part of the manuscript; Bo Yang of Arizona State University for proofreading part
of the manuscript, revising a number of the MATLAB programs, and developing the
flow chart for accessing the CD Multimedia material; and Razib S. Shishir of Arizona
State University for developing all of the Java-based software, including the Interac-
tive Questionnaires, Applets, and Animations. Special thanks to the many companies
(Motorola, Inc., Northrop Grumman Corporation, March Microwave Systems, B.V.,
Ball Aerospace & Technologies Corporation, Samsung, Midland Radio Corporation,
Winegard Company, Antenna Research Associates, Inc., Seavey Engineering Asso-
ciates, Inc., and TCI, A Dielectric Company) for providing photos, illustrations, and
copyright permissions. The author acknowledges the long-term friendship and support
from Dennis DeCarlo, George C. Barber, Dr. Karl Moeller, Dr. Brian McCabe, Dr. W.
Dev Palmer, Michael C. Miller, Frank A. Cansler, and the entire AHE Program mem-
bership, too long to be included here. The friendship and collaborative arrangements
with Prof. Thodoros D. Tsiboukis and Prof. John N. Sahalos, both from the Aristotle
University of Thessaloniki, Greece, are recognized and appreciated. The loyalty and
friendship of my graduate students is acknowledged and valued. To all my teachers,
thank you. You have been my role models and inspiration.
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I am also grateful to the staff of John Wiley & Sons, Inc., especially George Telecki,
Associate Publisher, Wiley-Interscience, for his interest, support, cooperation, and pro-
duction of the third edition; Danielle Lacourciere, Associate Managing Editor, for the
production of the book; and Rachel Witmer, Editorial Assistant, for managing the
production of the cover. Finally, I must pay tribute to my family (Helen, Renie, and
Stephanie) for their support, patience, sacrifice, and understanding for the many hours
of neglect during the completion of the first, second, and third editions of this book.
It has been a pleasant but daunting task.

Constantine A. Balanis
Arizona State University
Tempe, AZ
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CHAPTER J
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Antennas

1.1 INTRODUCTION

An antenna is defined by Webster’s Dictionary as “a usually metallic device (as a rod
or wire) for radiating or receiving radio waves.” The IEEE Standard Definitions of
Terms for Antennas (IEEE Std 145-1983)* defines the antenna or aerial as “a means
for radiating or receiving radio waves.” In other words the antenna is the transitional
structure between free-space and a guiding device, as shown in Figure 1.1. The guiding
device or transmission line may take the form of a coaxial line or a hollow pipe
(waveguide), and it is used to transport electromagnetic energy from the transmitting
source to the antenna, or from the antenna to the receiver. In the former case, we have
a transmitting antenna and in the latter a receiving antenna.

A transmission-line Thevenin equivalent of the antenna system of Figure 1.1 in the
transmitting mode is shown in Figure 1.2 where the source is represented by an ideal
generator, the transmission line is represented by a line with characteristic impedance
Z., and the antenna is represented by a load Z4 [Z4 = (R + R,) + jX 4] connected
to the transmission line. The Thevenin and Norton circuit equivalents of the antenna are
also shown in Figure 2.27. The load resistance R; is used to represent the conduction
and dielectric losses associated with the antenna structure while R,, referred to as the
radiation resistance, is used to represent radiation by the antenna. The reactance X4
is used to represent the imaginary part of the impedance associated with radiation
by the antenna. This is discussed more in detail in Sections 2.13 and 2.14. Under
ideal conditions, energy generated by the source should be totally transferred to the
radiation resistance R,, which is used to represent radiation by the antenna. However,
in a practical system there are conduction-dielectric losses due to the lossy nature of
the transmission line and the antenna, as well as those due to reflections (mismatch)
losses at the interface between the line and the antenna. Taking into account the internal
impedance of the source and neglecting line and reflection (mismatch) losses, maximum

*IEEE Transactions on Antennas and Propagation, vols. AP-17, No. 3, May 1969; AP-22, No. 1, January
1974; and AP-31, No. 6, Part II, November 1983.

Antenna Theory: Analysis Design, Third Edition, by Constantine A. Balanis
ISBN 0-471-66782-X Copyright © 2005 John Wiley & Sons, Inc.



2 ANTENNAS

E-field

O e —— —

Sourc Transmission line Antenna Radiated free-space wave

Figure 1.1 Antenna as a transition device.

power is delivered to the antenna under conjugate matching. This is discussed in
Section 2.13.

The reflected waves from the interface create, along with the traveling waves
from the source toward the antenna, constructive and destructive interference patterns,
referred to as standing waves, inside the transmission line which represent pockets of
energy concentrations and storage, typical of resonant devices. A typical standing wave
pattern is shown dashed in Figure 1.2, while another is exhibited in Figure 1.15. If the
antenna system is not properly designed, the transmission line could act to a large
degree as an energy storage element instead of as a wave guiding and energy trans-
porting device. If the maximum field intensities of the standing wave are sufficiently
large, they can cause arching inside the transmission lines.

The losses due to the line, antenna, and the standing waves are undesirable. The
losses due to the line can be minimized by selecting low-loss lines while those of
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Figure 1.2 Transmission-line Thevenin equivalent of antenna in transmitting mode.

the antenna can be decreased by reducing the loss resistance represented by R; in
Figure 1.2. The standing waves can be reduced, and the energy storage capacity of the
line minimized, by matching the impedance of the antenna (load) to the characteris-
tic impedance of the line. This is the same as matching loads to transmission lines,
where the load here is the antenna, and is discussed more in detail in Section 9.7.
An equivalent similar to that of Figure 1.2 is used to represent the antenna system in
the receiving mode where the source is replaced by a receiver. All other parts of the
transmission-line equivalent remain the same. The radiation resistance R, is used to
represent in the receiving mode the transfer of energy from the free-space wave to the
antenna. This is discussed in Section 2.13 and represented by the Thevenin and Norton
circuit equivalents of Figure 2.27.

In addition to receiving or transmitting energy, an antenna in an advanced wireless
system is usually required to optimize or accentuate the radiation energy in some
directions and suppress it in others. Thus the antenna must also serve as a directional
device in addition to a probing device. It must then take various forms to meet the
particular need at hand, and it may be a piece of conducting wire, an aperture, a patch,
an assembly of elements (array), a reflector, a lens, and so forth.

For wireless communication systems, the antenna is one of the most critical com-
ponents. A good design of the antenna can relax system requirements and improve
overall system performance. A typical example is TV for which the overall broad-
cast reception can be improved by utilizing a high-performance antenna. The antenna
serves to a communication system the same purpose that eyes and eyeglasses serve to
a human.

The field of antennas is vigorous and dynamic, and over the last 60 years antenna
technology has been an indispensable partner of the communications revolution. Many
major advances that occurred during this period are in common use today; however,
many more issues and challenges are facing us today, especially since the demands
for system performances are even greater. Many of the major advances in antenna
technology that have been completed in the 1970s through the early 1990s, those that
were under way in the early 1990s, and signals of future discoveries and breakthroughs
were captured in a special issue of the Proceedings of the IEEE (Vol. 80, No. 1, January
1992) devoted to Antennas. The introductory paper of this special issue [1] provides
a carefully structured, elegant discussion of the fundamental principles of radiating
elements and has been written as an introduction for the nonspecialist and a review
for the expert.
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Figure 1.3 Wire antenna configurations.

1.2 TYPES OF ANTENNAS

We will now introduce and briefly discuss some forms of the various antenna types in
order to get a glance as to what will be encountered in the remainder of the book.

1.2.1 Wire Antennas

Wire antennas are familiar to the layman because they are seen virtually every-
where—on automobiles, buildings, ships, aircraft, spacecraft, and so on. There are
various shapes of wire antennas such as a straight wire (dipole), loop, and helix which
are shown in Figure 1.3. Loop antennas need not only be circular. They may take the
form of a rectangle, square, ellipse, or any other configuration. The circular loop is the
most common because of its simplicity in construction. Dipoles are discussed in more
detail in Chapter 4, loops in Chapter 5, and helices in Chapter 10.

1.2.2 Aperture Antennas

Aperture antennas may be more familiar to the layman today than in the past because of
the increasing demand for more sophisticated forms of antennas and the utilization of
higher frequencies. Some forms of aperture antennas are shown in Figure 1.4. Antennas
of this type are very useful for aircraft and spacecraft applications, because they can be
very conveniently flush-mounted on the skin of the aircraft or spacecraft. In addition,
they can be covered with a dielectric material to protect them from hazardous conditions
of the environment. Waveguide apertures are discussed in more detail in Chapter 12
while horns are examined in Chapter 13.

1.2.3 Microstrip Antennas

Microstrip antennas became very popular in the 1970s primarily for spaceborne applica-
tions. Today they are used for government and commercial applications. These antennas
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(a) Pyramidal horn

(b) Conical horn

(c) Rectangular waveguide

Figure 1.4 Aperture antenna configurations.

consist of a metallic patch on a grounded substrate. The metallic patch can take many
different configurations, as shown in Figure 14.2. However, the rectangular and circular
patches, shown in Figure 1.5, are the most popular because of ease of analysis and fab-
rication, and their attractive radiation characteristics, especially low cross-polarization
radiation. The microstrip antennas are low profile, comformable to planar and nonplanar
surfaces, simple and inexpensive to fabricate using modern printed-circuit technology,
mechanically robust when mounted on rigid surfaces, compatible with MMIC designs,
and very versatile in terms of resonant frequency, polarization, pattern, and impedance.
These antennas can be mounted on the surface of high-performance aircraft, spacecraft,
satellites, missiles, cars, and even handheld mobile telephones. They are discussed in
more detail in Chapter 14.

1.2.4 Array Antennas

Many applications require radiation characteristics that may not be achievable by a
single element. It may, however, be possible that an aggregate of radiating elements
in an electrical and geometrical arrangement (an array) will result in the desired
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Figure 1.5 Rectangular and circular microstrip (patch) antennas.

radiation characteristics. The arrangement of the array may be such that the radiation
from the elements adds up to give a radiation maximum in a particular direction or
directions, minimum in others, or otherwise as desired. Typical examples of arrays
are shown in Figure 1.6. Usually the term array is reserved for an arrangement in
which the individual radiators are separate as shown in Figures 1.6(a—c). However the
same term is also used to describe an assembly of radiators mounted on a continuous
structure, shown in Figure 1.6(d).

1.2.5 Reflector Antennas

The success in the exploration of outer space has resulted in the advancement of antenna
theory. Because of the need to communicate over great distances, sophisticated forms
of antennas had to be used in order to transmit and receive signals that had to travel
millions of miles. A very common antenna form for such an application is a parabolic
reflector shown in Figures 1.7(a) and (b). Antennas of this type have been built with
diameters as large as 305 m. Such large dimensions are needed to achieve the high
gain required to transmit or receive signals after millions of miles of travel. Another
form of a reflector, although not as common as the parabolic, is the corner reflector,
shown in Figure 1.7(c). These antennas are examined in detail in Chapter 15.
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Figure 1.6 Typical wire, aperture, and microstrip array configurations.

1.2.6 Lens Antennas

Lenses are primarily used to collimate incident divergent energy to prevent it from
spreading in undesired directions. By properly shaping the geometrical configuration
and choosing the appropriate material of the lenses, they can transform various forms
of divergent energy into plane waves. They can be used in most of the same applica-
tions as are the parabolic reflectors, especially at higher frequencies. Their dimensions
and weight become exceedingly large at lower frequencies. Lens antennas are classi-
fied according to the material from which they are constructed, or according to their
geometrical shape. Some forms are shown in Figure 1.8 [2].

In summary, an ideal antenna is one that will radiate all the power delivered to it
from the transmitter in a desired direction or directions. In practice, however, such
ideal performances cannot be achieved but may be closely approached. Various types
of antennas are available and each type can take different forms in order to achieve the
desired radiation characteristics for the particular application. Throughout the book,
the radiation characteristics of most of these antennas are discussed in detail.

1.3 RADIATION MECHANISM

One of the first questions that may be asked concerning antennas would be “how is
radiation accomplished?” In other words, how are the electromagnetic fields generated
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Figure 1.8 Typical lens antenna configurations. (source: L. V. Blake, Antennas, Wiley, New
York, 1966).
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by the source, contained and guided within the transmission line and antenna, and
finally “detached” from the antenna to form a free-space wave? The best explanation
may be given by an illustration. However, let us first examine some basic sources
of radiation.

1.3.1 Single Wire

Conducting wires are material whose prominent characteristic is the motion of electric
charges and the creation of current flow. Let us assume that an electric volume charge
density, represented by ¢, (coulombs/m?), is distributed uniformly in a circular wire
of cross-sectional area A and volume V, as shown in Figure 1.9. The total charge Q
within volume V is moving in the z direction with a uniform velocity v, (meters/sec).
It can be shown that the current density J, (amperes/m?) over the cross section of the
wire is given by [3]

J.=qyv, (1-1a)

If the wire is made of an ideal electric conductor, the current density J; (amperes/m)
resides on the surface of the wire and it is given by

Js ={4sV; (1-1b)

where g, (coulombs/m?) is the surface charge density. If the wire is very thin (ideally
zero radius), then the current in the wire can be represented by

I = qiv; (I-1¢)

where ¢; (coulombs/m) is the charge per unit length.

Instead of examining all three current densities, we will primarily concentrate on
the very thin wire. The conclusions apply to all three. If the current is time varying,
then the derivative of the current of (1-1¢) can be written as

dl, dv,
g 1-2
7y U = @ (1-2)

Figure 1.9 Charge uniformly distributed in a circular cross section cylinder wire.
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where dv,/dt = a. (meters/sec?) is the acceleration. If the wire is of length [, then
(1-2) can be written as

dl, dv
= =lg— =lga, (1-3)

l
dt dt

Equation (1-3) is the basic relation between current and charge, and it also serves as the
fundamental relation of electromagnetic radiation [4], [5]. It simply states that fo create
radiation, there must be a time-varying current or an acceleration (or deceleration) of
charge. We usually refer to currents in time-harmonic applications while charge is most
often mentioned in transients. To create charge acceleration (or deceleration) the wire
must be curved, bent, discontinuous, or terminated [1], [4]. Periodic charge acceleration
(or deceleration) or time-varying current is also created when charge is oscillating in
a time-harmonic motion, as shown in Figure 1.17 for a A/2 dipole. Therefore:

1. If a charge is not moving, current is not created and there is no radiation.
2. If charge is moving with a uniform velocity:
a. There is no radiation if the wire is straight, and infinite in extent.

b. There is radiation if the wire is curved, bent, discontinuous, terminated, or
truncated, as shown in Figure 1.10.

3. If charge is oscillating in a time-motion, it radiates even if the wire is straight.

A qualitative understanding of the radiation mechanism may be obtained by consid-
ering a pulse source attached to an open-ended conducting wire, which may be con-
nected to the ground through a discrete load at its open end, as shown in Figure 1.10(d).
When the wire is initially energized, the charges (free electrons) in the wire are set in
motion by the electrical lines of force created by the source. When charges are accel-
erated in the source-end of the wire and decelerated (negative acceleration with respect
to original motion) during reflection from its end, it is suggested that radiated fields
are produced at each end and along the remaining part of the wire, [1], [4]. Stronger
radiation with a more broad frequency spectrum occurs if the pulses are of shorter or
more compact duration while continuous time-harmonic oscillating charge produces,
ideally, radiation of single frequency determined by the frequency of oscillation. The
acceleration of the charges is accomplished by the external source in which forces set
the charges in motion and produce the associated field radiated. The deceleration of the
charges at the end of the wire is accomplished by the internal (self) forces associated
with the induced field due to the buildup of charge concentration at the ends of the wire.
The internal forces receive energy from the charge buildup as its velocity is reduced to
zero at the ends of the wire. Therefore, charge acceleration due to an exciting electric
field and deceleration due to impedance discontinuities or smooth curves of the wire
are mechanisms responsible for electromagnetic radiation. While both current density
(J.) and charge density (g,) appear as source terms in Maxwell’s equation, charge is
viewed as a more fundamental quantity, especially for transient fields. Even though
this interpretation of radiation is primarily used for transients, it can be used to explain
steady state radiation [4].
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Figure 1.10 Wire configurations for radiation.

1.3.2 Two-Wires

Let us consider a voltage source connected to a two-conductor transmission line which
is connected to an antenna. This is shown in Figure 1.11(a). Applying a voltage across
the two-conductor transmission line creates an electric field between the conductors.
The electric field has associated with it electric lines of force which are tangent to
the electric field at each point and their strength is proportional to the electric field
intensity. The electric lines of force have a tendency to act on the free electrons
(easily detachable from the atoms) associated with each conductor and force them
to be displaced. The movement of the charges creates a current that in turn creates
a magnetic field intensity. Associated with the magnetic field intensity are magnetic
lines of force which are tangent to the magnetic field.

We have accepted that electric field lines start on positive charges and end on
negative charges. They also can start on a positive charge and end at infinity, start at
infinity and end on a negative charge, or form closed loops neither starting or ending on
any charge. Magnetic field lines always form closed loops encircling current-carrying
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Figure 1.11 Source, transmission line, antenna, and detachment of electric field lines.

conductors because physically there are no magnetic charges. In some mathematical for-
mulations, it is often convenient to introduce equivalent magnetic charges and magnetic
currents to draw a parallel between solutions involving electric and magnetic sources.

The electric field lines drawn between the two conductors help to exhibit the dis-
tribution of charge. If we assume that the voltage source is sinusoidal, we expect the
electric field between the conductors to also be sinusoidal with a period equal to that
of the applied source. The relative magnitude of the electric field intensity is indicated
by the density (bunching) of the lines of force with the arrows showing the relative
direction (positive or negative). The creation of time-varying electric and magnetic
fields between the conductors forms electromagnetic waves which travel along the
transmission line, as shown in Figure 1.11(a). The electromagnetic waves enter the
antenna and have associated with them electric charges and corresponding currents. If
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we remove part of the antenna structure, as shown in Figure 1.11(b), free-space waves
can be formed by “connecting” the open ends of the electric lines (shown dashed).
The free-space waves are also periodic but a constant phase point Py moves outwardly
with the speed of light and travels a distance of A/2 (to P;) in the time of one-half
of a period. It has been shown [6] that close to the antenna the constant phase point
Py moves faster than the speed of light but approaches the speed of light at points far
away from the antenna (analogous to phase velocity inside a rectangular waveguide).
Figure 1.12 displays the creation and travel of free-space waves by a prolate spheroid
with A/2 interfocal distance where A is the wavelength. The free-space waves of a
center-fed A/2 dipole, except in the immediate vicinity of the antenna, are essentially
the same as those of the prolate spheroid.

The question still unanswered is how the guided waves are detached from the
antenna to create the free-space waves that are indicated as closed loops in Figures 1.11
and 1.12. Before we attempt to explain that, let us draw a parallel between the guided
and free-space waves, and water waves [7] created by the dropping of a pebble in a
calm body of water or initiated in some other manner. Once the disturbance in the
water has been initiated, water waves are created which begin to travel outwardly. If
the disturbance has been removed, the waves do not stop or extinguish themselves but
continue their course of travel. If the disturbance persists, new waves are continuously
created which lag in their travel behind the others. The same is true with the electro-
magnetic waves created by an electric disturbance. If the initial electric disturbance by
the source is of a short duration, the created electromagnetic waves travel inside the

i

Figure 1.12 Electric field lines of free-space wave for a A/2 antenna at t =0, T/8, T/4, and
3T/8. (sourck: J. D. Kraus, Electromagnetics, 4th ed., McGraw-Hill, New York, 1992. Reprinted
with permission of J. D. Kraus and John D. Cowan, Jr.).
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Figure 1.13 Electric field lines of free-space wave for biconical antenna.

transmission line, then into the antenna, and finally are radiated as free-space waves,
even if the electric source has ceased to exist (as was with the water waves and their
generating disturbance). If the electric disturbance is of a continuous nature, electro-
magnetic waves exist continuously and follow in their travel behind the others. This
is shown in Figure 1.13 for a biconical antenna. When the electromagnetic waves are
within the transmission line and antenna, their existence is associated with the pres-
ence of the charges inside the conductors. However, when the waves are radiated, they
form closed loops and there are no charges to sustain their existence. This leads us
to conclude that electric charges are required to excite the fields but are not needed to
sustain them and may exist in their absence. This is in direct analogy with water waves.

1.3.3 Dipole

Now let us attempt to explain the mechanism by which the electric lines of force are
detached from the antenna to form the free-space waves. This will again be illustrated
by an example of a small dipole antenna where the time of travel is negligible. This
is only necessary to give a better physical interpretation of the detachment of the lines
of force. Although a somewhat simplified mechanism, it does allow one to visualize
the creation of the free-space waves. Figure 1.14(a) displays the lines of force created
between the arms of a small center-fed dipole in the first quarter of the period during
which time the charge has reached its maximum value (assuming a sinusoidal time
variation) and the lines have traveled outwardly a radial distance A /4. For this example,
let us assume that the number of lines formed are three. During the next quarter of
the period, the original three lines travel an additional A/4 (a total of A/2 from the
initial point) and the charge density on the conductors begins to diminish. This can be
thought of as being accomplished by introducing opposite charges which at the end of
the first half of the period have neutralized the charges on the conductors. The lines
of force created by the opposite charges are three and travel a distance A/4 during
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Figure 1.14 Formation and detachment of electric field lines for short dipole.

the second quarter of the first half, and they are shown dashed in Figure 1.14(b).
The end result is that there are three lines of force pointed upward in the first A/4
distance and the same number of lines directed downward in the second A/4. Since
there is no net charge on the antenna, then the lines of force must have been forced
to detach themselves from the conductors and to unite together to form closed loops.
This is shown in Figure 1.14(c). In the remaining second half of the period, the same
procedure is followed but in the opposite direction. After that, the process is repeated
and continues indefinitely and electric field patterns, similar to those of Figure 1.12,
are formed.

1.3.4 Computer Animation-Visualization of Radiation Problems

A difficulty that students usually confront is that the subject of electromagnetics
is rather abstract, and it is hard to visualize electromagnetic wave propagation and
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interaction. With today’s advanced numerical and computational methods, and anima-
tion and visualization software and hardware, this dilemma can, to a large extent, be
minimized. To address this problem, we have developed and included in this chapter
computer programs to animate and visualize three radiation problems. Descriptions
of the computer programs are found in the computer disc included in this book. Each
problem is solved using the Finite-Difference Time-Domain (FD-TD) method [8]-[10],
a method which solves Maxwell’s equations as a function of time in discrete time steps
at discrete points in space. A picture of the fields can then be taken at each time step
to create a movie which can be viewed as a function of time. Other animation and
visualization software, referred to as applets, are included in the attached CD.

The three radiation problems that are animated and can be visualized using the
computer program of this chapter and included in the computer disc are:

a. Infinite length line source (two-dimensional) excited by a single Gaussian pulse
and radiating in an unbounded medium.

b. Infinite length line source (two-dimensional) excited by a single Gaussian pulse
and radiating inside a perfectly electric conducting (PEC) square cylinder.

c. E-plane sectoral horn (two-dimensional form of Figure 13.2) excited by a contin-
uous cosinusoidal voltage source and radiating in an unbounded medium.

In order to animate and then visualize each of the three radiation problems, the user
needs MATLAB [11] and the MATLAB M-file, found in the computer disc included in
the book, to produce the corresponding FD-TD solution of each radiation problem. For
each radiation problem, the M-File executed in MATLAB produces a movie by taking
a picture of the computational domain every third time step. The movie is viewed as
a function of time as the wave travels in the computational space.

A. Infinite Line Source in an Unbounded Medium (tm_open)

The first FD-TD solution is that of an infinite length line source excited by a single time-
derivative Gaussian pulse, with a duration of approximately 0.4 nanoseconds, in a two-
dimensional TM?-computational domain. The unbounded medium is simulated using
a six-layer Berenger Perfectly Matched Layer (PML) Absorbing Boundary Condition
(ABC) [9], [10] to truncate the computational space at a finite distance without, in
principle, creating any reflections. Thus, the pulse travels radially outward creating a
traveling type of a wavefront. The outward moving wavefronts are easily identified
using the coloring scheme for the intensity (or gray scale for black and white monitors)
when viewing the movie. The movie is created by the MATLAB M-File which produces
the FD-TD solution by taking a picture of the computational domain every third time
step. Each time step is 5 picoseconds while each FD-TD cell is 3 mm on a side.
The movie is 37 frames long covering 185 picoseconds of elapsed time. The entire
computational space is 15.3 cm by 15.3 cm and is modeled by 2500 square FD-TD
cells (50x50), including 6 cells to implement the PML ABC.

B. Infinite Line Source in a PEC Square Cylinder (tm_box)

This problem is simulated similarly as that of the line source in an unbounded medium,
including the characteristics of the pulse. The major difference is that the computa-
tional domain of this problem is truncated by PEC walls; therefore there is no need for



CURRENT DISTRIBUTION ON A THIN WIRE ANTENNA 17

PML ABC. For this problem the pulse travels in an outward direction and is reflected
when it reaches the walls of the cylinder. The reflected pulse along with the radi-
ally outward traveling pulse interfere constructively and destructively with each other
and create a standing type of a wavefront. The peaks and valleys of the modified
wavefront can be easily identified when viewing the movie, using the colored or gray
scale intensity schemes. Sufficient time is allowed in the movie to permit the pulse
to travel from the source to the walls of the cylinder, return back to the source, and
then return back to the walls of the cylinder. Each time step is 5 picoseconds and
each FD-TD cell is 3 mm on a side. The movie is 70 frames long covering 350
picoseconds of elapsed time. The square cylinder, and thus the computational space,
has a cross section of 15.3 cm by 15.3 cm and is modeled using an area 50 by 50
FD-TD cells.

C. E-Plane Sectoral Horn in an Unbounded Medium (te_horn)

The E-plane sectoral horn is excited by a cosinusoidal voltage (CW) of 9.84 GHz in
a TEZ computational domain, instead of the Gaussian pulse excitation of the previous
two problems. The unbounded medium is implemented using an eight-layer Berenger
PML ABC. The computational space is 25.4 cm by 25.4 cm and is modeled using
100 by 100 FD-TD cells (each square cell being 2.54 mm on a side). The movie is
70 frames long covering 296 picoseconds of elapsed time and is created by taking a
picture every third frame. Each time step is 4.23 picoseconds in duration. The horn
has a total flare angle of 52° and its flared section is 2.62 cm long, is fed by a parallel
plate 1 cm wide and 4.06 cm long, and has an aperture of 3.56 cm.

1.4 CURRENT DISTRIBUTION ON A THIN WIRE ANTENNA

In the preceding section we discussed the movement of the free electrons on the
conductors representing the transmission line and the antenna. In order to illustrate the
creation of the current distribution on a linear dipole, and its subsequent radiation, let
us first begin with the geometry of a lossless two-wire transmission line, as shown
in Figure 1.15(a). The movement of the charges creates a traveling wave current, of
magnitude /y/2, along each of the wires. When the current arrives at the end of each
of the wires, it undergoes a complete reflection (equal magnitude and 180° phase
reversal). The reflected traveling wave, when combined with the incident traveling
wave, forms in each wire a pure standing wave pattern of sinusoidal form as shown
in Figure 1.15(a). The current in each wire undergoes a 180° phase reversal between
adjoining half-cycles. This is indicated in Figure 1.15(a) by the reversal of the arrow
direction. Radiation from each wire individually occurs because of the time-varying
nature of the current and the termination of the wire.

For the two-wire balanced (symmetrical) transmission line, the current in a half-
cycle of one wire is of the same magnitude but 180° out-of-phase from that in the
corresponding half-cycle of the other wire. If in addition the spacing between the
two wires is very small (s < 1), the fields radiated by the current of each wire are
essentially cancelled by those of the other. The net result is an almost ideal (and
desired) nonradiating transmission line.

As the section of the transmission line between 0 < z < [/2 begins to flare, as shown
in Figure 1.15(b), it can be assumed that the current distribution is essentially unaltered
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Figure 1.15 Current distribution on a lossless two-wire transmission line, flared transmission
line, and linear dipole.

in form in each of the wires. However, because the two wires of the flared section
are not necessarily close to each other, the fields radiated by one do not necessarily
cancel those of the other. Therefore ideally there is a net radiation by the transmission-
line system.

Ultimately the flared section of the transmission line can take the form shown in
Figure 1.15(c). This is the geometry of the widely used dipole antenna. Because of
the standing wave current pattern, it is also classified as a standing wave antenna
(as contrasted to the traveling wave antennas which will be discussed in detail in
Chapter 10). If [ < A, the phase of the current standing wave pattern in each arm is the
same throughout its length. In addition, spatially it is oriented in the same direction as
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that of the other arm as shown in Figure 1.15(c). Thus the fields radiated by the two
arms of the dipole (vertical parts of a flared transmission line) will primarily reinforce
each other toward most directions of observation (the phase due to the relative position
of each small part of each arm must also be included for a complete description of the
radiation pattern formation).

If the diameter of each wire is very small (d < 1), the ideal standing wave pattern
of the current along the arms of the dipole is sinusoidal with a null at the end. How-
ever, its overall form depends on the length of each arm. For center-fed dipoles with
<A l=Xx/2,A/2 <l <X and A <[ < 3X1/2, the current patterns are illustrated in
Figures 1.16(a—d). The current pattern of a very small dipole (usually 1/50 <[ <
A/10) can be approximated by a triangular distribution since sin(kl/2) >~ kl/2 when
kl/2 is very small. This is illustrated in Figure 1.16(a).

Because of its cyclical spatial variations, the current standing wave pattern of a
dipole longer than A(l > A) undergoes 180° phase reversals between adjoining half-
cycles. Therefore the current in all parts of the dipole does not have the same phase.
This is demonstrated graphically in Figure 1.16(d) for A <! < 3A/2. In turn, the fields
radiated by some parts of the dipole will not reinforce those of the others. As a result,

(a) [ <<\

(b) 1=2\/2

(©) N2<I<NX\

(d) A<I<3A\)2

Figure 1.16 Current distribution on linear dipoles.
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Figure 1.17 Current distribution on a X/2 wire antenna for different times.

significant interference and cancelling effects will be noted in the formation of the total
radiation pattern. See Figure 4.11 for the pattern of a A/2 dipole and Figure 4.7 for
that of a 1.25A dipole.

For a time-harmonic varying system of radian frequency w = 2xf, the current
standing wave patterns of Figure 1.16 represent the maximum current excitation for
any time. The current variations, as a function of time, on a A/2 center-fed dipole are
shown in Figure 1.17 for 0 <t < T/2 where T is the period. These variations can be
obtained by multiplying the current standing wave pattern of Figure 1.16(b) by cos(wt).

1.5 HISTORICAL ADVANCEMENT

The history of antennas [12] dates back to James Clerk Maxwell who unified the
theories of electricity and magnetism, and eloquently represented their relations through
a set of profound equations best known as Maxwell’s Equations. His work was first
published in 1873 [13]. He also showed that light was electromagnetic and that both
light and electromagnetic waves travel by wave disturbances of the same speed. In
1886, Professor Heinrich Rudolph Hertz demonstrated the first wireless electromagnetic
system. He was able to produce in his laboratory at a wavelength of 4 m a spark in
the gap of a transmitting A /2 dipole which was then detected as a spark in the gap of
a nearby loop. It was not until 1901 that Guglielmo Marconi was able to send signals
over large distances. He performed, in 1901, the first transatlantic transmission from
Poldhu in Cornwall, England, to St. John’s Newfoundland. His transmitting antenna
consisted of 50 vertical wires in the form of a fan connected to ground through a
spark transmitter. The wires were supported horizontally by a guyed wire between two
60-m wooden poles. The receiving antenna at St. John’s was a 200-m wire pulled and
supported by a kite. This was the dawn of the antenna era.

From Marconi’s inception through the 1940s, antenna technology was primarily
centered on wire related radiating elements and frequencies up to about UHF. It was
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not until World War II that modern antenna technology was launched and new elements
(such as waveguide apertures, horns, reflectors) were primarily introduced. Much of
this work is captured in the book by Silver [14]. A contributing factor to this new era
was the invention of microwave sources (such as the klystron and magnetron) with
frequencies of 1 GHz and above.

While World War II launched a new era in antennas, advances made in com-
puter architecture and technology during the 1960s through the 1990s have had a
major impact on the advance of modern antenna technology, and they are expected
to have an even greater influence on antenna engineering into the twenty-first cen-
tury. Beginning primarily in the early 1960s, numerical methods were introduced that
allowed previously intractable complex antenna system configurations to be analyzed
and designed very accurately. In addition, asymptotic methods for both low frequencies
(e.g., Moment Method (MM), Finite-Difference, Finite-Element) and high frequencies
(e.g., Geometrical and Physical Theories of Diffraction) were introduced, contributing
significantly to the maturity of the antenna field. While in the past antenna design
may have been considered a secondary issue in overall system design, today it plays
a critical role. In fact, many system successes rely on the design and performance
of the antenna. Also, while in the first half of this century antenna technology may
have been considered almost a “cut and try” operation, today it is truly an engineering
art. Analysis and design methods are such that antenna system performance can be
predicted with remarkable accuracy. In fact, many antenna designs proceed directly
from the initial design stage to the prototype without intermediate testing. The level
of confidence has increased tremendously.

The widespread interest in antennas is reflected by the large number of books writ-
ten on the subject [15]. These have been classified under four categories: Fundamental,
Handbooks, Measurements, and Specialized. This is an outstanding collection of books,
and it reflects the popularity of the antenna subject, especially since the 1950s. Because
of space limitations, only a partial list is included here [2], [5], [7], [16]—[39], includ-
ing the first and second editions of this book in 1982, 1997. Some of these books are
now out of print.

1.5.1 Antenna Elements

Prior to World War II most antenna elements were of the wire type (long wires,
dipoles, helices, rhombuses, fans, etc.), and they were used either as single elements
or in arrays. During and after World War II, many other radiators, some of which
may have been known for some and others of which were relatively new, were put
into service. This created a need for better understanding and optimization of their
radiation characteristics. Many of these antennas were of the aperture type (such as
open-ended waveguides, slots, horns, reflectors, lenses), and they have been used for
communication, radar, remote sensing, and deep space applications both on airborne
and earth-based platforms. Many of these operate in the microwave region and are
discussed in Chapters 12, 13, 15 and in [40].

Prior to the 1950s, antennas with broadband pattern and impedance characteristics
had bandwidths not much greater than about 2:1. In the 1950s, a breakthrough in
antenna evolution was created which extended the maximum bandwidth to as great
as 40:1 or more. Because the geometries of these antennas are specified by angles
instead of linear dimensions, they have ideally an infinite bandwidth. Therefore, they
are referred to as frequency independent. These antennas are primarily used in the
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10—-10,000 MHz region in a variety of applications including TV, point-to-point com-
munications, feeds for reflectors and lenses, and many others. This class of antennas
is discussed in more detail in Chapter 11 and in [41].

It was not until almost 20 years later that a fundamental new radiating element,
which has received a lot of attention and many applications since its inception, was
introduced. This occurred in the early 1970s when the microstrip or patch antennas was
reported. This element is simple, lightweight, inexpensive, low profile, and conformal
to the surface. These antennas are discussed in more detail in Chapter 14 and in [42].

Major advances in millimeter wave antennas have been made in recent years, including
integrated antennas where active and passive circuits are combined with the radiating
elements in one compact unit (monolithic form). These antennas are discussed in [43].

Specific radiation pattern requirements usually cannot be achieved by single antenna
elements, because single elements usually have relatively wide radiation patterns and
low values of directivity. To design antennas with very large directivities, it is usually
necessary to increase the electrical size of the antenna. This can be accomplished by
enlarging the electrical dimensions of the chosen single element. However, mechanical
problems are usually associated with very large elements. An alternative way to achieve
large directivities, without increasing the size of the individual elements, is to use multiple
single elements to form an array. An array is a sampled version of a very large single
element. In an array, the mechanical problems of large single elements are traded for the
electrical problems associated with the feed networks of arrays. However, with today’s
solid-state technology, very efficient and low-cost feed networks can be designed.

Arrays are the most versatile of antenna systems. They find wide applications not only
in many spaceborne systems, but in many earthbound missions as well. In most cases, the
elements of an array are identical; this is not necessary, but it is often more convenient,
simpler, and more practical. With arrays, it is practical not only to synthesize almost any
desired amplitude radiation pattern, but the main lobe can be scanned by controlling the
relative phase excitation between the elements. This is most convenient for applications
where the antenna system is not readily accessible, especially for spaceborne missions.
The beamwidth of the main lobe along with the side lobe level can be controlled by
the relative amplitude excitation (distribution) between the elements of the array. In fact,
there is a trade-off between the beamwidth and the side lobe level based on the amplitude
distribution. Analysis, design, and synthesis of arrays are discussed in Chapters 6 and 7.
However, advances in array technology are reported in [44]—[48].

A new antenna array design referred to as smart antenna, based on basic technol-
ogy of the 1970s and 1980s, is sparking interest especially for wireless applications.
This antenna design, which combines antenna technology with that of digital signal
processing (DSP), is discussed in some detail in Chapter 16.

1.5.2 Methods of Analysis

There is plethora of antenna elements, many of which exhibit intricate configurations.
To analyze each as a boundary-value problem and obtain solutions in closed form, the
antenna structure must be described by an orthogonal curvilinear coordinate system.
This places severe restrictions on the type and number of antenna systems that can be
analyzed using such a procedure. Therefore, other exact or approximate methods are
often pursued. Two methods that in the last three decades have been preeminent in the
analysis of many previously intractable antenna problems are the Integral Equation
(IE) method and the Geometrical Theory of Diffraction (GTD).
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The Integral Equation method casts the solution to the antenna problem in the form
of an integral (hence its name) where the unknown, usually the induced current density,
is part of the integrand. Numerical techniques, such as the Moment Method (MM), are
then used to solve for the unknown. Once the current density is found, the radiation
integrals of Chapter 3 are used to find the fields radiated and other systems parameters.
This method is most convenient for wire-type antennas and more efficient for structures
that are small electrically. One of the first objectives of this method is to formulate the
IE for the problem at hand. In general, there are two type of IE’s. One is the Electric
Field Integral Equation (EFIE), and it is based on the boundary condition of the total
tangential electric field. The other is the Magnetic Field Integral Equation (MFIE), and
it is based on the boundary condition that expresses the total electric current density
induced on the surface in terms of the incident magnetic field. The MFIE is only valid
for closed surfaces. For some problems, it is more convenient to formulate an EFIE,
while for others it is more appropriate to use an MFIE. Advances, applications, and
numerical issues of these methods are addressed in Chapter 8 and in [3] and [49].

When the dimensions of the radiating system are many wavelengths, low-frequency
methods are not as computationally efficient. However, high-frequency asymptotic
techniques can be used to analyze many problems that are otherwise mathematically
intractable. One such method that has received considerable attention and application
over the years is the GTD, which is an extension of geometrical optics (GO), and it
overcomes some of the limitations of GO by introducing a diffraction mechanism. The
Geometrical Theory of Diffraction is briefly discussed in Section 12.10. However, a
detailed treatment is found in Chapter 13 of [3] while recent advances and applications
are found in [50] and [51].

For structures that are not convenient to analyze by either of the two methods, a
combination of the two is often used. Such a technique is referred to as a hybrid method,
and it is described in detail in [52]. Another method, which has received a lot of attention
in scattering, is the Finite-Difference Time-Domain (FDTD). This method has also been
applied to antenna radiation problems [53]-[56]. A method that is beginning to gain
momentum in its application to antenna problems is the Finite Element Method [57]—-[61].

1.5.3 Some Future Challenges

Antenna engineering has enjoyed a very successful period during the 1940s—1990s.
Responsible for its success have been the introduction and technological advances of some
new elements of radiation, such as aperture antennas, reflectors, frequency independent
antennas, and microstrip antennas. Excitement has been created by the advancement of the
low-frequency and high-frequency asymptotic methods, which has been instrumental in
analyzing many previously intractable problems. A major factor in the success of antenna
technology has been the advances in computer architecture and numerical computation
methods. Today antenna engineering is considered a truly fine engineering art.
Although a certain level of maturity has been attained, there are many challenging
opportunities and problems to be solved. Phased array architecture integrating monolithic
MIC technology is still a most challenging problem. Integration of new materials, such
as metamaterials [62], artificial magnetic conductors and soft/hard surfaces [63], into
antenna technology offers many opportunities, and asymptotic methods will play key roles
in their incorporation and system performance. Computational electromagnetics using
supercomputing and parallel computing capabilities will model complex electromagnetic
wave interactions, in both the frequency and time domains. Innovative antenna designs,
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such as those using smart antennas [64], and multifunction, reconfigurable antennas and
antenna systems [65], to perform complex and demanding system functions remain a
challenge. New basic elements are always welcome and offer refreshing opportunities.
New applications include, but are not limited to wireless communications, direct broadcast
satellite systems, global positioning satellites (GPS), high-accuracy airborne navigation,
global weather, earth resource systems, and others. Because of the many new applications,
the lower portion of the EM spectrum has been saturated and the designs have been pushed
to higher frequencies, including the millimeter wave frequency bands.

1.6 MULTIMEDIA

In the CD that is part of this book, the following multimedia resources related to this
chapter are included:

a. Java-based interactive questionnaire with answers.

b. Three Matlab-based animation-visualization programs designated
o tm_open
e tm_box

e te_horn
which are described in detail in Section 1.3.4 and the corresponding READ ME
file of the attached CD.

c. Power Point (PPT) viewgraphs.
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CHAPTER2
e e

Fundamental Parameters of Antennas

2.1 INTRODUCTION

To describe the performance of an antenna, definitions of various parameters are neces-
sary. Some of the parameters are interrelated and not all of them need be specified for
complete description of the antenna performance. Parameter definitions will be given
in this chapter. Many of those in quotation marks are from the IEEE Standard Defini-
tions of Terms for Antennas (IEEE Std 145-1983).* This is a revision of the IEEE Std
145-1973.

2.2 RADIATION PATTERN

An antenna radiation pattern or antenna pattern is defined as “a mathematical function
or a graphical representation of the radiation properties of the antenna as a function
of space coordinates. In most cases, the radiation pattern is determined in the far-
field region and is represented as a function of the directional coordinates. Radiation
properties include power flux density, radiation intensity, field strength, directivity,
phase or polarization.” The radiation property of most concern is the two- or three-
dimensional spatial distribution of radiated energy as a function of the observer’s
position along a path or surface of constant radius. A convenient set of coordinates
is shown in Figure 2.1. A trace of the received electric (magnetic) field at a constant
radius is called the amplitude field pattern. On the other hand, a graph of the spatial
variation of the power density along a constant radius is called an amplitude power
pattern.

Often the field and power patterns are normalized with respect to their maximum
value, yielding normalized field and power patterns. Also, the power pattern is usually
plotted on a logarithmic scale or more commonly in decibels (dB). This scale is usually
desirable because a logarithmic scale can accentuate in more details those parts of the

*IEEE Transactions on Antennas and Propagation, Vols. AP-17, No. 3, May 1969; Vol. AP-22, No. 1,
January 1974; and Vol. AP-31, No. 6, Part II, November 1983.
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Figure 2.1 Coordinate system for antenna analysis.

pattern that have very low values, which later we will refer to as minor lobes. For an
antenna, the

a. field pattern (in linear scale) typically represents a plot of the magnitude of the
electric or magnetic field as a function of the angular space.

b. power pattern (in linear scale) typically represents a plot of the square of the
magnitude of the electric or magnetic field as a function of the angular space.

c. power pattern (in dB) represents the magnitude of the electric or magnetic field,
in decibels, as a function of the angular space.

To demonstrate this, the two-dimensional normalized field pattern (plotted in linear
scale), power pattern (plotted in linear scale), and power pattern (plotted on a log-
arithmic dB scale) of a 10-element linear antenna array of isotropic sources, with a
spacing of d = 0.25A between the elements, are shown in Figure 2.2. In this and sub-
sequent patterns, the plus (+) and minus (—) signs in the lobes indicate the relative
polarization of the amplitude between the various lobes, which changes (alternates)
as the nulls are crossed. To find the points where the pattern achieves its half-power
(—3 dB points), relative to the maximum value of the pattern, you set the value of the

a. field pattern at 0.707 value of its maximum, as shown in Figure 2.2(a)

b. power pattern (in a linear scale) at its 0.5 value of its maximum, as shown in
Figure 2.2(D)

c. power pattern (in dB) at —3 dB value of its maximum, as shown in Figure 2.2(c).
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(c) Power pattern (in dB)

Figure 2.2 Two-dimensional normalized field pattern (linear scale), power pattern (linear
scale), and power pattern (in dB) of a 10-element linear array with a spacing of d = 0.25A.

All three patterns yield the same angular separation between the two half-power points,
38.64°, on their respective patterns, referred to as HPBW and illustrated in Figure 2.2.
This is discussed in detail in Section 2.5.

In practice, the three-dimensional pattern is measured and recorded in a series of
two-dimensional patterns. However, for most practical applications, a few plots of the
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pattern as a function of 6 for some particular values of ¢, plus a few plots as a function
of ¢ for some particular values of 6, give most of the useful and needed information.

2.2.1 Radiation Pattern Lobes

Various parts of a radiation pattern are referred to as lobes, which may be subclassified
into major or main, minor, side, and back lobes.

A radiation lobe is a “portion of the radiation pattern bounded by regions of
relatively weak radiation intensity.” Figure 2.3(a) demonstrates a symmetrical three-
dimensional polar pattern with a number of radiation lobes. Some are of greater
radiation intensity than others, but all are classified as lobes. Figure 2.3(b) illustrates

z
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Figure 2.3 (a) Radiation lobes and beamwidths of an antenna pattern. (b) Linear plot of power
pattern and its associated lobes and beamwidths.
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a linear two-dimensional pattern [one plane of Figure 2.3(a)] where the same pattern
characteristics are indicated.

MATLAB-based computer programs, designated as polar and spherical, have been
developed and are included in the CD of this book. These programs can be used to
plot the two-dimensional patterns, both polar and semipolar (in linear and dB scales),
in polar form and spherical three-dimensional patterns (in linear and dB scales). A
description of these programs is found in the attached CD. Other programs that have
been developed for plotting rectangular and polar plots are those of [1]-[3].

A major lobe (also called main beam) is defined as “the radiation lobe containing
the direction of maximum radiation.” In Figure 2.3 the major lobe is pointing in the
6 = 0 direction. In some antennas, such as split-beam antennas, there may exist more
than one major lobe. A minor lobe is any lobe except a major lobe. In Figures 2.3(a)
and (b) all the lobes with the exception of the major can be classified as minor lobes.
A side lobe is “a radiation lobe in any direction other than the intended lobe.” (Usually
a side lobe is adjacent to the main lobe and occupies the hemisphere in the direction
of the main beam.) A back lobe is “a radiation lobe whose axis makes an angle of
approximately 180° with respect to the beam of an antenna.” Usually it refers to a
minor lobe that occupies the hemisphere in a direction opposite to that of the major
(main) lobe.

Minor lobes usually represent radiation in undesired directions, and they should be
minimized. Side lobes are normally the largest of the minor lobes. The level of minor
lobes is usually expressed as a ratio of the power density in the lobe in question to
that of the major lobe. This ratio is often termed the side lobe ratio or side lobe level.
Side lobe levels of —20 dB or smaller are usually not desirable in most applications.

Figure 2.4 Normalized three-dimensional amplitude field pattern (in linear scale) of a 10-ele-
ment linear array antenna with a uniform spacing of d = 0.25A and progressive phase shift
B = —0.6 between the elements.
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Attainment of a side lobe level smaller than —30 dB usually requires very careful
design and construction. In most radar systems, low side lobe ratios are very important
to minimize false target indications through the side lobes.

A normalized three-dimensional far-field amplitude pattern, plotted on a linear scale,
of a 10-element linear antenna array of isotropic sources with a spacing of d = 0.25A
and progressive phase shift 8 = —0.67, between the elements is shown in Figure 2.4. It
is evident that this pattern has one major lobe, five minor lobes and one back lobe. The
level of the side lobe is about —9 dB relative to the maximum. A detailed presentation
of arrays is found in Chapter 6. For an amplitude pattern of an antenna, there would
be, in general, three electric-field components (E,, Ey, Eg) at each observation point
on the surface of a sphere of constant radius r = r,, as shown in Figure 2.1. In the far
field, the radial £, component for all antennas is zero or vanishingly small compared
to either one, or both, of the other two components (see Section 3.6 of Chapter 3).
Some antennas, depending on their geometry and also observation distance, may have
only one, two, or all three components. In general, the magnitude of the total electric
field would be |[E| = \/IErlz + |Eg|?> + | E4|*. The radial distance in Figure 2.4, and
similar ones, represents the magnitude of |E|.

2.2.2 Isotropic, Directional, and Omnidirectional Patterns

An isotropic radiator is defined as “a hypothetical lossless antenna having equal radia-
tion in all directions.” Although it is ideal and not physically realizable, it is often

[
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Figure 2.5 Principal E- and H-plane patterns for a pyramidal horn antenna.
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taken as a reference for expressing the directive properties of actual antennas. A
directional antenna is one “having the property of radiating or receiving electromag-
netic waves more effectively in some directions than in others. This term is usually
applied to an antenna whose maximum directivity is significantly greater than that
of a half-wave dipole.” Examples of antennas with directional radiation patterns are
shown in Figures 2.5 and 2.6. It is seen that the pattern in Figure 2.6 is nondirec-
tional in the azimuth plane [f(¢),0 = /2] and directional in the elevation plane
[g(@), ¢ = constant]. This type of a pattern is designated as omnidirectional, and it
is defined as one “having an essentially nondirectional pattern in a given plane (in
this case in azimuth) and a directional pattern in any orthogonal plane (in this case in
elevation).” An omnidirectional pattern is then a special type of a directional pattern.

2.2.3 Principal Patterns

For a linearly polarized antenna, performance is often described in terms of its principal
E- and H-plane patterns. The E-plane is defined as “the plane containing the electric-
field vector and the direction of maximum radiation,” and the H-plane as ‘“the plane
containing the magnetic-field vector and the direction of maximum radiation.” Although
it is very difficult to illustrate the principal patterns without considering a specific
example, it is the usual practice to orient most antennas so that at least one of the
principal plane patterns coincide with one of the geometrical principal planes. An
illustration is shown in Figure 2.5. For this example, the x-z plane (elevation plane;
¢ = 0) is the principal E-plane and the x-y plane (azimuthal plane; 6 = 7/2) is the
principal H-plane. Other coordinate orientations can be selected.

The omnidirectional pattern of Figure 2.6 has an infinite number of principal E-planes
(elevation planes; ¢ = ¢.) and one principal H-plane (azimuthal plane; 8 = 90°).

Antenna

Radiation
pattern

Figure 2.6 Omnidirectional antenna pattern.
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Figure 2.7 Field regions of an antenna.

2.2.4 Field Regions

The space surrounding an antenna is usually subdivided into three regions: (a) reactive
near-field, (b) radiating near-field (Fresnel) and (c) far-field (Fraunhofer) regions as
shown in Figure 2.7. These regions are so designated to identify the field structure in
each. Although no abrupt changes in the field configurations are noted as the bound-
aries are crossed, there are distinct differences among them. The boundaries separating
these regions are not unique, although various criteria have been established and are
commonly used to identify the regions.

Reactive near-field region is defined as “that portion of the near-field region imme-
diately surrounding the antenna wherein the reactive field predominates.” For most
antennas, the outer boundary of this region is commonly taken to exist at a distance R <
0.62,/ D3/ from the antenna surface, where A is the wavelength and D is the largest
dimension of the antenna. “For a very short dipole, or equivalent radiator, the outer
boundary is commonly taken to exist at a distance A/2m from the antenna surface.”

Radiating near-field (Fresnel) region is defined as “that region of the field of an
antenna between the reactive near-field region and the far-field region wherein radiation
fields predominate and wherein the angular field distribution is dependent upon the dis-
tance from the antenna. If the antenna has a maximum dimension that is not large com-
pared to the wavelength, this region may not exist. For an antenna focused at infinity,
the radiating near-field region is sometimes referred to as the Fresnel region on the basis
of analogy to optical terminology. If the antenna has a maximum overall dimension
which is very small compared to the wavelength, this field region may not exist.” The
inner boundary is taken to be the distance R > 0.62,/D3/A and the outer boundary the
distance R < 2D?/A where D is the largest* dimension of the antenna. This criterion is
based on a maximum phase error of /8. In this region the field pattern is, in general,
a function of the radial distance and the radial field component may be appreciable.

*To be valid, D must also be large compared to the wavelength (D > 1).
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Far-field (Fraunhofer) region is defined as “that region of the field of an antenna
where the angular field distribution is essentially independent of the distance from the
antenna. If the antenna has a maximum* overall dimension D, the far-field region is
commonly taken to exist at distances greater than 2D?/) from the antenna, A being
the wavelength. The far-field patterns of certain antennas, such as multibeam reflector
antennas, are sensitive to variations in phase over their apertures. For these antennas
2D?/x may be inadequate. In physical media, if the antenna has a maximum overall
dimension, D, which is large compared to 7 /|y|, the far-field region can be taken to
begin approximately at a distance equal to |y|D?/m from the antenna, y being the
propagation constant in the medium. For an antenna focused at infinity, the far-field
region is sometimes referred to as the Fraunhofer region on the basis of analogy to
optical terminology.” In this region, the field components are essentially transverse and
the angular distribution is independent of the radial distance where the measurements
are made. The inner boundary is taken to be the radial distance R = 2D?/A and the
outer one at infinity.

The amplitude pattern of an antenna, as the observation distance is varied from the
reactive near field to the far field, changes in shape because of variations of the fields,
both magnitude and phase. A typical progression of the shape of an antenna, with the
largest dimension D, is shown in Figure 2.8. It is apparent that in the reactive near-
field region the pattern is more spread out and nearly uniform, with slight variations.
As the observation is moved to the radiating near-field region (Fresnel), the pattern
begins to smooth and form lobes. In the far-field region (Fraunhofer), the pattern is
well formed, usually consisting of few minor lobes and one, or more, major lobes.
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Figure 2.8 Typical changes of antenna amplitude pattern shape from reactive near field
toward the far field. (source: Y. Rahmat-Samii, L. I. Williams, and R. G. Yoccarino, The UCLA
Bi-polar Planar-Near-Field Antenna Measurement and Diagnostics Range,” IEEE Antennas &
Propagation Magazine, Vol. 37, No. 6, December 1995 © 1995 IEEE).

*To be valid, D must also be large compared to the wavelength (D > 1).
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To illustrate the pattern variation as a function of radial distance beyond the min-
imum 2D?/ far-field distance, in Figure 2.9 we have included three patterns of a
parabolic reflector calculated at distances of R = 2D? /A, 4D? /A, and infinity [4]. Tt
is observed that the patterns are almost identical, except for some differences in the
pattern structure around the first null and at a level below 25 dB. Because infinite dis-
tances are not realizable in practice, the most commonly used criterion for minimum
distance of far-field observations is 2D?/A.

2.2.5 Radian and Steradian

The measure of a plane angle is a radian. One radian is defined as the plane angle with
its vertex at the center of a circle of radius r that is subtended by an arc whose length
is r. A graphical illustration is shown in Figure 2.10(a). Since the circumference of a
circle of radius r is C = 2mr, there are 2 rad (27rr/r) in a full circle.

The measure of a solid angle is a steradian. One steradian is defined as the solid
angle with its vertex at the center of a sphere of radius r that is subtended by a spherical
surface area equal to that of a square with each side of length r. A graphical illustration
is shown in Figure 2.10(b). Since the area of a sphere of radius r is A = 4mr?, there
are 47 st (4r?/r?) in a closed sphere.

Relative power pattern (dB)

U = (wD/\) sin 0

Figure 2.9 Calculated radiation patterns of a paraboloid antenna for different distances from
the antenna. (sourck: J. S. Hollis, T. J. Lyon, and L. Clayton, Jr. (eds.), Microwave Antenna
Measurements, Scientific-Atlanta, Inc., July 1970).
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(b) Steradian

Figure 2.10 Geometrical arrangements for defining a radian and a steradian.

The infinitesimal area dA on the surface of a sphere of radius r, shown in Figure 2.1,
is given by
dA =r*sinfdod¢y (m?) -1

Therefore, the element of solid angle d$2 of a sphere can be written as

dA .
a2 = —- =sinf dode¢ (sr) (2-2)
r
Example 2.1

For a sphere of radius r, find the solid angle Q24 (in square radians or steradians) of a
spherical cap on the surface of the sphere over the north-pole region defined by spherical
angles of 0 < 6 < 30°,0 < ¢ < 180°. Refer to Figures 2.1 and 2.10. Do this

a. exactly.

b. using Q24 ~ A®; - A®,, where A®; and A®, are two perpendicular angular
separations of the spherical cap passing through the north pole.

Compare the two.
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Solution:

a. Using (2-2), we can write that

360° 30° 2 /6 27 7/6
QA=/ / dQ:/ / sin@d@dgb:/ d¢/ sin 6 df
0 0 o Jo 0 0

= 27[—cos A]|7/® = 27[—0.867 + 1] = 27(0.133) = 0.83566
A® =AO, T 72
b. QA AB-AB, = (A0 == (Z)=— = 1.09662
A 1 g (AGy) 3 ( 3 ) 9

It is apparent that the approximate beam solid angle is about 31.23% in error.

2.3 RADIATION POWER DENSITY

Electromagnetic waves are used to transport information through a wireless medium or
a guiding structure, from one point to the other. It is then natural to assume that power
and energy are associated with electromagnetic fields. The quantity used to describe the
power associated with an electromagnetic wave is the instantaneous Poynting vector
defined as

W=¢x% (2-3)

W = instantaneous Poynting vector (W/m?)
€ = instantaneous electric-field intensity (V/m)
J€ = instantaneous magnetic-field intensity (A/m)

Note that script letters are used to denote instantaneous fields and quantities, while
roman letters are used to represent their complex counterparts.

Since the Poynting vector is a power density, the total power crossing a closed
surface can be obtained by integrating the normal component of the Poynting vector
over the entire surface. In equation form

@’:ﬂ‘Wﬂs:ﬂ‘Wﬁda (2-4)
s s

% = instantaneous total power (W)
i = unit vector normal to the surface
da = infinitesimal area of the closed surface (m?)

For applications of time-varying fields, it is often more desirable to find the aver-
age power density which is obtained by integrating the instantaneous Poynting vector
over one period and dividing by the period. For time-harmonic variations of the form
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e/® we define the complex fields E and H which are related to their instantaneous
counterparts € and ¥ by

B(x,y,z;1) = Re[E(x, y, 2)e/'] (2-5)
H(x, v, z;1) = Re[H(x, y, 2)e/*'] (2-6)

Using the definitions of (2-5) and (2-6) and the identity Re[Ee/*' ] = 1[Ee/' + E*e~/¢'],
(2-3) can be written as

W =€ x # = 1Re[E x H*] + 1Re[E x He/*'] (2-7)

The first term of (2-7) is not a function of time, and the time variations of the second are
twice the given frequency. The time average Poynting vector (average power density)
can be written as

W (x, y,2) = [W(x,y,2:0)]ay = iRe[E x H*] | (W/m?) (2-8)

The % factor appears in (2-7) and (2-8) because the E and H fields represent peak
values, and it should be omitted for RMS values.

A close observation of (2-8) may raise a question. If the real part of (E x H*)/2
represents the average (real) power density, what does the imaginary part of the same
quantity represent? At this point it will be very natural to assume that the imaginary part
must represent the reactive (stored) power density associated with the electromagnetic
fields. In later chapters, it will be shown that the power density associated with the
electromagnetic fields of an antenna in its far-field region is predominately real and
will be referred to as radiation density.

Based upon the definition of (2-8), the average power radiated by an antenna (radi-
ated power) can be written as

P =Py = ﬂwrad -ds = ﬂwav -fida
S S

1
=§ﬂRe(ExH*)-ds
S

(2-9)

The power pattern of the antenna, whose definition was discussed in Section 2.2,
is just a measure, as a function of direction, of the average power density radiated
by the antenna. The observations are usually made on a large sphere of constant
radius extending into the far field. In practice, absolute power patterns are usually not
desired. However, the performance of the antenna is measured in terms of the gain (to
be discussed in a subsequent section) and in terms of relative power patterns. Three-
dimensional patterns cannot be measured, but they can be constructed with a number
of two-dimensional cuts.
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Example 2.2

The radial component of the radiated power density of an antenna is given by

. . . sinf 2
Wea =4, W, =4, 40— (W/m")
r

where A is the peak value of the power density, 6 is the usual spherical coordinate, and &,
is the radial unit vector. Determine the total radiated power.

Solution: For a closed surface, a sphere of radius r is chosen. To find the total radiated
power, the radial component of the power density is integrated over its surface. Thus

Prag = ﬂwrad -fida
N
2 /4
= / f <ﬁrA0
0 0

A three-dimensional normalized plot of the average power density at a distance of r = 1 m
is shown in Figure 2.6.

sin 6 a D 2
" -(@,r°sinfdfdp) =nAy (W)

An isotropic radiator is an ideal source that radiates equally in all directions. Although
it does not exist in practice, it provides a convenient isotropic reference with which to
compare other antennas. Because of its symmetric radiation, its Poynting vector will
not be a function of the spherical coordinate angles 6 and ¢. In addition, it will have
only a radial component. Thus the total power radiated by it is given by

27 T
Pradzﬂwo-dszf / [4, Wo(r)] - [, sin@ dO d¢] = 4nr’W,  (2-10)
0 0
S

and the power density by

A A Prad 2
Wo=2aW, =4, (W/m~) (2-11)
4mr?

which is uniformly distributed over the surface of a sphere of radius r.

2.4 RADIATION INTENSITY

Radiation intensity in a given direction is defined as “the power radiated from an
antenna per unit solid angle.” The radiation intensity is a far-field parameter, and
it can be obtained by simply multiplying the radiation density by the square of the
distance. In mathematical form it is expressed as

U =r*Wu (2-12)
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where

U = radiation intensity (W/unit solid angle)
Wiaa = radiation density (W/m?)

The radiation intensity is also related to the far-zone electric field of an antenna,
referring to Figure 2.4, by

V2 r2
U®, ¢) = - [E 0, ) = — [|Es (.0, )1 + |Ey (1, 0, $)’]
n 2n
(2-12a)
~ o [1ES®0. §)I* + |E5©0. ¢)I]
where
—jkr

E(r, 0, ¢) = far-zone electric-field intensity of the antenna = E°(9, ¢)

,
Eg, E4 = far-zone electric-field components of the antenna

n = intrinsic impedance of the medium

The radial electric-field component (E,) is assumed, if present, to be small in the far
zone. Thus the power pattern is also a measure of the radiation intensity.

The total power is obtained by integrating the radiation intensity, as given by (2-12),
over the entire solid angle of 4. Thus

2 b4
P = ﬂUdQ = / / Usin0dode (2-13)
0 0
Q

where d2 = element of solid angle = sin 6 d6 d¢.

Example 2.3

For the problem of Example 2.2, find the total radiated power using (2-13).
Solution: Using (2-12)
U = r*Wya = Apsinf

and by (2-13)

2 b4 2 T
Pog = / / Usingdodp = Ao/ / sin® 0 do dp = > Ay
0 0 0 0

which is the same as that obtained in Example 2.2. A three-dimensional plot of the relative
radiation intensity is also represented by Figure 2.6.

For an isotropic source U will be independent of the angles 6 and ¢, as was the
case for Wy,q. Thus (2-13) can be written as

PradzﬂUOdQZUOﬂ dQ=47TU() (2—14)

Q Q
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or the radiation intensity of an isotropic source as

P,
Uy = - (2-15)
4

2.5 BEAMWIDTH

Associated with the pattern of an antenna is a parameter designated as beamwidth.
The beamwidth of a pattern is defined as the angular separation between two identical
points on opposite side of the pattern maximum. In an antenna pattern, there are a
number of beamwidths. One of the most widely used beamwidths is the Half-Power
Beamwidth (HPBW ), which is defined by IEEE as: “In a plane containing the direction
of the maximum of a beam, the angle between the two directions in which the radiation
intensity is one-half value of the beam.” This is demonstrated in Figure 2.2. Another
important beamwidth is the angular separation between the first nulls of the pattern,
and it is referred to as the First-Null Beamwidth (FNBW). Both the HPBW and FNBW
are demonstrated for the pattern in Figure 2.11 for the pattern of Example 2.4. Other
beamwidths are those where the pattern is —10 dB from the maximum, or any other
value. However, in practice, the term beamwidth, with no other identification, usually
refers to HPBW.

The beamwidth of an antenna is a very important figure of merit and often is used
as a trade-off between it and the side lobe level; that is, as the beamwidth decreases,
the side lobe increases and vice versa. In addition, the beamwidth of the antenna is also

1 U®.¢)

HPBW =28.65°

" FNBW = 60°

(a) Three dimensional (b) Two-dimensional

Figure 2.11 Three- and two-dimensional power patterns (in linear scale) of U(0) =
cos?(0) cos?(306).
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used to describe the resolution capabilities of the antenna to distinguish between two
adjacent radiating sources or radar targets. The most common resolution criterion states
that the resolution capability of an antenna to distinguish between two sources is equal
to half the first-null beamwidth (FNBW/2), which is usually used to approximate the half-
power beamwidth (HPBW) [5], [6]. That is, two sources separated by angular distances
equal or greater than FNBW/2 ~ HPBW of an antenna with a uniform distribution can
be resolved. If the separation is smaller, then the antenna will tend to smooth the
angular separation distance.

Example 2.4

The normalized radiation intensity of an antenna is represented by
U(®) = cos* () cos*(39), (0 <6 <90°, 0°<¢ <360°)

The three- and two-dimensional plots of this, plotted in a linear scale, are shown in
Figure 2.11. Find the

a. half-power beamwidth HPBW (in radians and degrees)
b. first-null beamwidth FNBW (in radians and degrees)

Solution:

a. Since the U (0) represents the power pattern, to find the half-power beamwidth
you set the function equal to half of its maximum, or

U (6)|p—g, = c0s*(8) cos*(30)|g—g, = 0.5 = cos by, cos 36, = 0.707

6, = cos—! 0.707
cos 36,

Since this is an equation with transcendental functions, it can be solved iter-
atively. After a few iterations, it is found that

0, ~ 0.25 radians = 14.325°

Since the function U (f) is symmetrical about the maximum at 6 = 0, then
the HPBW is
HPBW = 26, =~ 0.50 radians = 28.65°

b. To find the first-null beamwidth (FNBW), you set the U (f) equal to zero, or

U (6)|o—g, = cos*(0) cos>(36)|o—g, = O
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This leads to two solutions for 6,.
0 T o
cost, =0=6, =cos (0) = B} radians = 90
| b . o
cos36, =0=6, = 3 cos” (0) = 3 radians = 30

The one with the smallest value leads to the FNBW. Again, because of the
symmetry of the pattern, the FNBW is

FNBW = 26, = % rrrefierns = E0F

2.6 DIRECTIVITY

In the 1983 version of the IEEE Standard Definitions of Terms for Antennas, there has
been a substantive change in the definition of directivity, compared to the definition
of the 1973 version. Basically the term directivity in the new 1983 version has been
used to replace the term directive gain of the old 1973 version. In the new 1983
version the term directive gain has been deprecated. According to the authors of the
new 1983 standards, “this change brings this standard in line with common usage
among antenna engineers and with other international standards, notably those of the
International Electrotechnical Commission (IEC).” Therefore directivity of an antenna
defined as “the ratio of the radiation intensity in a given direction from the antenna
to the radiation intensity averaged over all directions. The average radiation intensity
is equal to the total power radiated by the antenna divided by 4x. If the direction is
not specified, the direction of maximum radiation intensity is implied.” Stated more
simply, the directivity of a nonisotropic source is equal to the ratio of its radiation
intensity in a given direction over that of an isotropic source. In mathematical form,
using (2-15), it can be written as

(2-16)

If the direction is not specified, it implies the direction of maximum radiation intensity
(maximum directivity) expressed as

U | max Umax 477" Umax
Dmax = DO = = =
Uo Uy Prag

(2-16a)

D = directivity (dimensionless)
Dy = maximum directivity (dimensionless)
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U = radiation intensity (W/unit solid angle)
Umax = maximum radiation intensity (W/unit solid angle)

Uy = radiation intensity of isotropic source (W/unit solid angle)
P,,q = total radiated power (W)

For an isotropic source, it is very obvious from (2-16) or (2-16a) that the directivity
is unity since U, Uy, and Uy are all equal to each other.

For antennas with orthogonal polarization components, we define the partial direc-
tivity of an antenna for a given polarization in a given direction as “that part of the
radiation intensity corresponding to a given polarization divided by the total radiation
intensity averaged over all directions.” With this definition for the partial directivity,
then in a given direction “the total directivity is the sum of the partial directivities for
any two orthogonal polarizations.” For a spherical coordinate system, the total max-
imum directivity Dy for the orthogonal 6 and ¢ components of an antenna can be
written as

Do = Dy + Dy (2-17)

while the partial directivities Dg and Dy are expressed as

4 Ug
Dy= ——20 (2-17a)
(Prad)H + (Prad)¢
4 U,
Dy it (2-17b)

- (Prad)H + (Prad)¢

where

Uy = radiation intensity in a given direction contained in 6 field component

Uy = radiation intensity in a given direction contained in ¢ field component
(Praq)s = radiated power in all directions contained in 6 field component
(Prag)¢ = radiated power in all directions contained in ¢ field component

Example 2.5

As an illustration, find the maximum directivity of the antenna whose radiation intensity is
that of Example 2.2. Write an expression for the directivity as a function of the directional
angles 6 and ¢.

Solution: The radiation intensity is given by

U = r’Wyq = Agsin6

The maximum radiation is directed along 6 = /2. Thus

Unax = AO
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In Example 2.2 it was found that
Prag = 772A0

Using (2-16a), we find that the maximum directivity is equal to

4z U, 4
D= 22mx _ % 107
Praa g

Since the radiation intensity is only a function of 6, the directivity as a function of the
directional angles is represented by

D = Dysinf = 1.27sin6

Before proceeding with a more general discussion of directivity, it may be proper
at this time to consider another example, compute its directivity, compare it with that
of the previous example, and comment on what it actually represents. This may give
the reader a better understanding and appreciation of the directivity.

Example 2.6

The radial component of the radiated power density of an infinitesimal linear dipole of length
| < X is given by
sin 0

W,y = ﬁr W, = ﬁrAO (W/mz)

72

where A is the peak value of the power density, 6 is the usual spherical coordinate, and &,
is the radial unit vector. Determine the maximum directivity of the antenna and express the
directivity as a function of the directional angles 6 and ¢.

Solution: The radiation intensity is given by

U=r*W, = Agsin’0
The maximum radiation is directed along 6 = w /2. Thus
Umax = Ao

The total radiated power is given by

2 kg 87T
Prag = UdQ:AOf / sin® 0 sin@ d6 dp = Ao <?)
0 0

Q
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Using (2-16a), we find that the maximum directivity is equal to

Dy = 471 Upnax _ 4 Ag . é

P, 87 )
rad ? (AO)

which is greater than 1.27 found in Example 2.5. Thus the directivity is represented by

D = Dysin®*0 = 1.5sin>6

At this time it will be proper to comment on the results of Examples 2.5 and 2.6.
To better understand the discussion, we have plotted in Figure 2.12 the relative radia-
tion intensities of Example 2.5 (U = A sin6) and Example 2.6 (U = Ay sin® #) where
Ap was set equal to unity. We see that both patterns are omnidirectional but that of
Example 2.6 has more directional characteristics (is narrower) in the elevation plane.
Since the directivity is a “figure of merit” describing how well the radiator directs
energy in a certain direction, it should be convincing from Figure 2.12 that the direc-
tivity of Example 2.6 should be higher than that of Example 2.5.

To demonstrate the significance of directivity, let us consider another example; in
particular let us examine the directivity of a half-wavelength dipole (I = A/2), which
is derived in Section 4.6 of Chapter 4 and can be approximated by

D = Dysin’ 0 = 1.67sin 0 (2-18)

y

Figure 2.12 Three-dimensional radiation intensity patterns. (source: P. Lorrain and D. R.
Corson, Electromagnetic Fields and Waves, 2nd ed., W. H. Freeman and Co. Copyright © 1970).
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since it can be shown that

T 2

cos (— cos 9)

st~ | —2  / (2-18a)
sin O

where 0 is measured from the axis along the length of the dipole. The values repre-
sented by (2-18) and those of an isotropic source (D = 1) are plotted two- and three-
dimensionally in Figure 2.13(a,b). For the three-dimensional graphical representation
of Figure 2.13(b), at each observation point only the largest value of the two directiv-
ities is plotted. It is apparent that when sin~!(1/1.67)!/3 = 57.44° < 6 < 122.56°, the
dipole radiator has greater directivity (greater intensity concentration) in those direc-
tions than that of an isotropic source. Outside this range of angles, the isotropic radiator
has higher directivity (more intense radiation). The maximum directivity of the dipole
(relative to the isotropic radiator) occurs when 6 = m/2, and it is 1.67 (or 2.23 dB)
more intense than that of the isotropic radiator (with the same radiated power).

The three-dimensional pattern of Figure 2.13(b), and similar ones, are included
throughout the book to represent the three-dimensional radiation characteristics of
antennas. These patterns are plotted using software developed in [2] and [3], and can
be used to visualize the three-dimensional radiation pattern of the antenna. These
three-dimensional programs, along with the others, can be used effectively toward the
design and synthesis of antennas, especially arrays, as demonstrated in [7] and [8]. A
MATLAB-based program, designated as 3-D Spherical, is also included in the attached
CD to produce similar plots.

The directivity of an isotropic source is unity since its power is radiated equally
well in all directions. For all other sources, the maximum directivity will always be
greater than unity, and it is a relative “figure of merit” which gives an indication of the
directional properties of the antenna as compared with those of an isotropic source. In
equation form, this is indicated in (2-16a). The directivity can be smaller than unity;
in fact it can be equal to zero. For Examples 2.5 and 2.6, the directivity is equal to
zero in the 6 = O direction. The values of directivity will be equal to or greater than
zero and equal to or less than the maximum directivity (0 < D < D).

A more general expression for the directivity can be developed to include sources
with radiation patterns that may be functions of both spherical coordinate angles 6
and ¢. In the previous examples we considered intensities that were represented by
only one coordinate angle 6, in order not to obscure the fundamental concepts by the
mathematical details. So it may now be proper, since the basic definitions have been
illustrated by simple examples, to formulate the more general expressions.

Let the radiation intensity of an antenna be of the form

1
U=BF@®.¢)= 5 [IEJ®. ¢)I* + | EG©. ¢)I°] (2-19)

where By is a constant, and Ej and Eg are the antenna’s far-zone electric-field com-
ponents. The maximum value of (2-19) is given by

Unax = BoF (0, @) lmax = BoFinax (8, @) (2-19a)
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The total radiated power is found using
2w k4
Pag = ﬂU(@, P)d2 = Bof f F(0,¢)sin0dbde (2-20)
o Jo
Q

We now write the general expression for the directivity and maximum directivity using
(2-16) and (2-16a), respectively, as

D, ¢) = 4w ——— F©.¢)

/ / F(0, ¢)sind db do (2-21)
o Jo

Dy = O Dl

/ / F(0, ¢)sin0 do d¢ (2-22)
0o Jo
Equation (2-22) can also be written as
4 4
DO = 2 b4 = Q_ 223
[/ / F(Q,d))sin@d@d(p} /F(@,qb)lmax A (2-23)
0o Jo

where 24 is the beam solid angle, and it is given by

1 2 T ) 2 T )
QAzm/O /0 F(9,¢)sm9d9d¢—/0 /0 F,(0,¢)sin6dod¢
(2-24)

_ F0.¢9) _
0 = 0 ) 229

Dividing by F (0, ¢)|max merely normalizes the radiation intensity F(6, ¢), and it
makes its maximum value unity.

The beam solid angle Q2 4 is defined as the solid angle through which all the power of
the antenna would flow if its radiation intensity is constant (and equal to the maximum
value of U) for all angles within Q4.

2.6.1 Directional Patterns

Instead of using the exact expression of (2-23) to compute the directivity, it is often
convenient to derive simpler expressions, even if they are approximate, to compute the
directivity. These can also be used for design purposes. For antennas with one narrow
major lobe and very negligible minor lobes, the beam solid angle is approximately equal
to the product of the half-power beamwidths in two perpendicular planes [5] shown
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X X

(a) Nonsymmetrical pattern (b) Symmetrical pattern

Figure 2.14 Beam solid angles for nonsymmetrical and symmetrical radiation patterns.

in Figure 2.14(a). For a rotationally symmetric pattern, the half-power beamwidths in
any two perpendicular planes are the same, as illustrated in Figure 2.14(b).
With this approximation, (2-23) can be approximated by

D 4 4 (2-26)
o — — ~ -
Q4 @lr@Zr
The beam solid angle €24 has been approximated by
QA ~ ®lr®2r (2—263)

where

®, = half-power beamwidth in one plane (rad)
®,, = half-power beamwidth in a plane at a right angle to the other (rad)

If the beamwidths are known in degrees, (2-26) can be written as

D~ 47 (180/)> 41,253

~ - (2-27)
0 B1402 0140

where

®,4 = half-power beamwidth in one plane (degrees)
®,4 = half-power beamwidth in a plane at a right angle to the other (degrees)

For planar arrays, a better approximation to (2-27) is [9]

32400 32,400
T Qu(degrees)? 0,0, (2-272)

0
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The validity of (2-26) and (2-27) is based on a pattern that has only one major lobe
and any minor lobes, if present, should be of very low intensity. For a pattern with
two identical major lobes, the value of the maximum directivity using (2-26) or (2-27)
will be twice its actual value. For patterns with significant minor lobes, the values of
maximum directivity obtained using (2-26) or (2-27), which neglect any minor lobes,
will usually be too high.

Example 2.7

The radiation intensity of the major lobe of many antennas can be adequately represented by
U = Bycosb
where By is the maximum radiation intensity. The radiation intensity exists only in the upper

hemisphere (0 <6 < /2,0 < ¢ < 2m), and it is shown in Figure 2.15.
Find the

a. beam solid angle; exact and approximate.
b. maximum directivity; exact using (2-23) and approximate using (2-26).

Solution: The half-power point of the pattern occurs at & = 60°. Thus the beamwidth in
the 6 direction is 120° or

6 2w
Ir = ——
3
Z
—~_ |
o |
I
N 1
U=cos 6 A '
=COS |
N \‘ \
I
91, II I
I
! 1
0, /f,‘ 1
| :
S !
Iy
17 :
11 H
1l |
1" \
I
i :
I’ !
I
T y
N 1
N
\ I
N |
N I
> I
b——7T>
I

Z

X

Figure 2.15 Radiation intensity pattern of the form U = cos 6 in the upper hemisphere.
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Since the pattern is independent of the ¢ coordinate, the beamwidth in the other plane is

also equal to

2
®2r =S ?

a. Beam solid angle Q4:
Exact: Using (2-24), (2-25)

360°  90° 2 pr/2
QAzf / cos@dQ:f f cos6sin6 db do
0 0 o Jo

2 /2
=/ d¢f cosf sin6 do
0 0

/2 /2
=27 / cosfsinfdf = f sin(20) d6 = m steradians
0 0

Approximate: Using (2-26a)

27 (2 27\?
Qu xR 0,0, = ?n (%) = (;) = 4.386 steradians

b. Directivity Dy:

4 4
Exact: Dy = Q—ﬂ _ T 4 (dimensionless) = 6.02 dB
A T
The same exact answer is obtained using (2-16a).
4 4
Approximate: Dy & Q—’Z = & — 2.865 (dimensionless) = 4.57 dB

The exact maximum directivity is 4 and its approximate value, using (2-26), is 2.865. Better
approximations can be obtained if the patterns have much narrower beamwidths, which will
be demonstrated later in this section.

Many times it is desirable to express the directivity in decibels (dB) instead of dimen-
sionless quantities. The expressions for converting the dimensionless quantities of
directivity and maximum directivity to decibels (dB) are

D(dB) = 101log,,[ D (dimensionless)] (2-28a)
Dy(dB) = 101log;,[ Do(dimensionless)] (2-28b)

It has also been proposed [10] that the maximum directivity of an antenna can also
be obtained approximately by using the formula

L_1 1+1 (2-29)
Dy, 2\D, D,
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where

1 _ 16In2

1 01,/2 - @2
[21 2/ sinede] Ir
n 0

1 _16In2

1 02-/2 - @2
[21 2/ sinede] 2
n 0

®1, and ©,, are the half-power beamwidths (in radians) of the E- and H-planes,
respectively. The formula of (2-29) will be referred to as the arithmetic mean of the
maximum directivity. Using (2-29a) and (2-29b) we can write (2-29) as

~

D) ~

(2-292)

~

D, ~

(2-29b)

1 1 [0 @2 @2 + 02
— ~ 1r r ) — O, 9 (2-30)
Dy 2lm2\16 ' 16 32In2
or
_ 32m2 22181
el +el e +e 20
22.181(180/7)> 72,815
Do ~ (180/m)” _ (2-30b)

e, +03, 0, +6}

where ©1, and ®,; are the half-power beamwidths in degrees. Equation (2-30a) is to
be contrasted with (2-26) while (2-30b) should be compared with (2-27).

In order to make an evaluation and comparison of the accuracies of (2-26) and
(2-30a), examples whose radiation intensities (power patterns) can be represented by

U©. ) = { Bgcos"(#) 0<0<m/2, 0<¢ <2m (2-31)

0 elsewhere

where n = 1 — 10, 11.28, 15, and 20 are considered. The maximum directivities were
computed using (2-26) and (2-30a) and compared with the exact values as obtained
using (2-23). The results are shown in Table 2.1. From the comparisons it is evident
that the error due to Tai & Pereira’s formula is always negative (i.e., it predicts lower
values of maximum directivity than the exact ones) and monotonically decreases as n
increases (the pattern becomes more narrow). However, the error due to Kraus’ formula
is negative for small values of n and positive for large values of n. For small values
of n the error due to Kraus’ formula is negative and positive for large values of n; the
error is zero when n = 5.497 >~ 5.5 (half-power beamwidth of 56.35°). In addition,
for symmetrically rotational patterns the absolute error due to the two approximate
formulas is identical when n = 11.28, which corresponds to a half-power beamwidth
of 39.77°. From these observations we conclude that, Kraus’ formula is more accurate
for small values of n (broader patterns) while Tai & Pereira’s is more accurate for large
values of n (narrower patterns). Based on absolute error and symmetrically rotational
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TABLE 2.1 Comparison of Exact and Approximate Values of Maximum Directivity for
U = cos” 0 Power Patterns

Exact Kraus Tai and Pereira
Equation Equation Kraus Equation Tai and Pereira
n (2-22) (2-26) % Error (2-30a) % Error
1 4 2.86 —28.50 2.53 —36.75
2 6 5.09 —15.27 4.49 —25.17
3 8 7.35 —8.12 6.48 —19.00
4 10 9.61 -3.90 8.48 —15.20
5 12 11.87 —1.08 10.47 —12.75
6 14 14.13 +0.93 12.46 —11.00
7 16 16.39 +2.48 14.47 -9.56
8 18 18.66 +3.68 16.47 —8.50
9 20 20.93 +4.64 18.47 —7.65
10 22 23.19 +5.41 20.47 —6.96
11.28 24.56 26.08 +6.24 23.02 —6.24
15 32 34.52 +7.88 30.46 —4.81
20 42 45.89 +9.26 40.46 —3.67

patterns, Kraus’ formula leads to smaller error for n < 11.28 (half-power beamwidth
greater than 39.77°) while Tai & Pereira’s leads to smaller error for n > 11.28 (half-
power beamwidth smaller than 39.77°). The results are shown plotted in Figure 2.16
for 0 < n < 450.

2.6.2 Omnidirectional Patterns

Some antennas (such as dipoles, loops, broadside arrays) exhibit omnidirectional pat-
terns, as illustrated by the three-dimensional patterns in Figure 2.17 (a,b). As single-
lobe directional patterns can be approximated by (2-31), omnidirectional patterns can
often be approximated by

U=|sin"(§)] 0<0<m 0<¢<2n (2-32)

where n represents both integer and noninteger values. The directivity of antennas with
patterns represented by (2-32) can be determined in closed from using the definition of
(2-16a). However, as was done for the single-lobe patterns of Figure 2.14, approximate
directivity formulas have been derived [11], [12] for antennas with omnidirectional
patterns similar to the ones shown in Figure 2.17 whose main lobe is approximated by
(2-32). The approximate directivity formula for an omnidirectional pattern as a function
of the pattern half-power beamwidth (in degrees), which is reported by McDonald
in [11], was derived based on the array factor of a broadside collinear array [see
Section 6.4.1 and (6-38a)] and is given by

101
~ HPBW (degrees) — 0.0027 [HPBW (degrees)]”

Do (2-33a)
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1000 ——1>—30.00
L 7
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900 | —— D, (exact) i 17
g0l —— Do (Krfius)(Eq..2—26) 7 129.03
2 |~~~ D, (Tai & Pereira)(Eq. 2-30a) P // _
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Figure 2.16 Comparison of exact and approximate values of directivity for directional
U = cos” 6 power patterns.

(a) With minor lobes

(b) Without minor lobes

Figure 2.17 Omnidirectional patterns with and without minor lobes.
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However, that reported by Pozar in [12] is derived based on the exact values obtained
using (2-32) and then representing the data in closed-form using curve-fitting, and it
is given by

Dy~ —172.4 + 191,/0.818 + 1/HPBW (degrees) (2-33b)

The approximate formula of (2-33a) should, in general, be more accurate for omnidi-
rectional patterns with minor lobes, as shown in Figure 2.17(a), while (2-33b) should
be more accurate for omnidirectional patterns with minor lobes of very low intensity
(ideally no minor lobes), as shown in Figure 2.17(b).

The approximate formulas of (2-33a) and (2-33b) can be used to design omni-
directional antennas with specified radiation pattern characteristics. To facilitate this
procedure, the directivity of antennas with omnidirectional patterns approximated by
(2-32) is plotted in Figure 2.18 versus n and the half-power beamwidth (in degrees).
Three curves are plotted in Figure 2.18; one using (2-16a) and referred as exact, one
using (2-33a) and denoted as McDonald, and the third using (2-33b) and denoted as
Pozar. Thus, the curves of Figure 2.18 can be used for design purposes, as follows:

a. Specify the desired directivity and determine the value of n and half-power
beamwidth of the omnidirectional antenna pattern, or

b. Specify the desired value of n or half-power beamwidth and determine the direc-
tivity of the omnidirectional antenna pattern.

To demonstrate the procedure, an example is taken.

20 30.01
18 : D, (exact) 12.55
6= D, (McDonald)(Eq.2-33a) — = 12.04
= L~~~ D, (Pozar)(Eq. 2-33b) g S
3 14l T 11.46
g B U=sin"9 ot o
£ 121 = o 1079 =
= °©
é B /_,-""ﬂ-‘ Q
Z 10+ — 10.00 2
e - Z= =
_ < g
> 8F e 9.03 g
§ 6 7.78
z L
41 6.02
2 3.01
0 ! ! ! L ! ! L ! ! L ! ! L
0 50 100 150 200 250 300 350 400 450

n

L v
180.0 19.0 13.5 11.0 9.5 8.5 7.8 7.2 6.7 6.4

HPBW (degrees)

Figure 2.18 Comparison of exact and approximate values of directivity for omnidirectional
U = sin" 6 power patterns.
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Example 2.8

Design an antenna with omnidirectional amplitude pattern with a half-power beamwidth of
90°. Express its radiation intensity by U = sin” . Determine the value of n and attempt to
identify elements that exhibit such a pattern. Determine the directivity of the antenna using
(2-16a), (2-33a), and (2-33b).

Solution: Since the half-power beamwidth is 90°, the angle at which the half-power point
occurs is 6 = 45°. Thus

U@ =45°) = 0.5 = sin" (45°) = (0.707)"

or
n=2

Therefore, the radiation intensity of the omnidirectional antenna is represented by U = sin® 0.
An infinitesimal dipole (see Chapter 4) or a small circular loop (see Chapter 5) are two
antennas which possess such a pattern.

Using the definition of (2-16a), the exact directivity is

Umax =1
2 b4
8
Prag =/ f sin 6 sin6 do dg = —-
0 0 3
4 3
o= =2 =1761 dB
8r/3 2

Since the half-power beamwidth is equal to 90°, then the directivity based on (2-33a) is
equal to
101

= 30— 0.0027(90)2 0.0027(90)2 =1.4825=1.71 dB

Dy

while that based on (2-33b) is equal to

Dy =—172.4+191,/0.818 +1/90 = 1.516 = 1.807 dB

The value of n and the three values of the directivity can also be obtained using Figure 2.18,
although they may not be as accurate as those given above because they have to be taken
off the graph. However, the curves can be used for other problems.

2.7 NUMERICAL TECHNIQUES

For most practical antennas, their radiation patterns are so complex that closed-form
mathematical expressions are not available. Even in those cases where expressions
are available, their form is so complex that integration to find the radiated power,
required to compute the maximum directivity, cannot be performed. Instead of using
the approximate expressions of Kraus, Tai and Pereira, McDonald, or Pozar alternate
and more accurate techniques may be desirable. With the high-speed computer systems
now available, the answer may be to apply numerical methods.
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Let us assume that the radiation intensity of a given antenna is separable, and it is

given by
U= Bf(0)g(9) (2-34)

where By is a constant. The directivity for such a system is given by

A7 Upnax
Dy= — 2-35
0 P (2-35)
where 5
Prag = Bo/ {f f(©0)g(¢)sin6 d9} deo (2-36)
0 0
which can also be written as
2 T
Prag = Bo/ g(®) {f f©) Sin@dG} do (2-37)
0 0

If the integrations in (2-37) cannot be performed analytically, then from integral
calculus we can write a series approximation

x N
/ £©)sindo =Y [£(6)sin6,]A6, (2-38)
0 i=1

For N uniform divisions over the 7 interval,

T
AG; = — 2-38
N (2-38a)

Referring to Figure 2.19, 6; can take many different forms. Two schemes are shown
in Figure 2.19 such that

9,-:1'(5), i=1,23.....N (2-38b)
N
or T pu

b= 5o +(—DT i=123 N (2-38¢)

In the former case, 6; is taken at the trailing edge of each division; in the latter case,
0; is selected at the middle of each division. The scheme that is more desirable will
depend upon the problem under investigation. Many other schemes are available.

In a similar manner, we can write for the ¢ variations that

21 M
/0 g@)de =Y 2(¢))A¢; (2-39)

j=1



60 FUNDAMENTAL PARAMETERS OF ANTENNAS
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26, \\,
> )
Y
f
/
4
7
'l
Vi
-ﬂ(&;‘
o [
¢ (Eq. 2-39)
¢/ (Eq. 2-39b)

Figure 2.19 Digitization scheme of pattern in spherical coordinates.

where for M uniform divisions

Ap = T (2-39a)
L= - a
M
Again referring to Figure 2.19
o= (2" = 1,2,3,.... M (2-39b)
j — ] M bl ] i b 9 9t

or

b= - i=123....M (2-39¢)

J 2M .] M ) J — by &y Iy ey

Combining (2-38), (2-38a), (2-39), and (2-39a) we can write (2-37) as

M N
Paa = Bo (%) (%) > {g(@) [; f@ sine,} } (2-40)

j=1

The double summation of (2-40) is performed by adding for each value of j(j =
1,2,3,..., M) all values of i(i = 1,2,3,..., N). In a computer program flowchart,
this can be performed by a loop within a loop. Physically, (2-40) can be inter-
preted by referring to Figure 2.19. It simply states that for each value of g(¢) at
the azimuthal angle ¢ = ¢;, the values of f(0)sinf are added for all values of
0 =06;(i=1,2,3,...,N). The values of 6; and ¢; can be determined by using either
of the forms as given by (2-38b) or (2-38c) and (2-39b) or (2-39c).
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Since the 6 and ¢ variations are separable, (2-40) can also be written as

M N
Pao = Bo (%) (%’) j;g@,-) [i;f(@i)sin(%] (2-41)

in which case each summation can be performed separately.
If the 6 and ¢ variations are not separable, and the radiation intensity is given by

U = ByF(9, ¢) (2-42)
the digital form of the radiated power can be written as

= (3) (37) 2

j=1

N
[Z F(6;, ¢;) sin 9,} (2-43)

i=1

6; and ¢; take different forms, two of which were introduced and are shown pictorially
in Figure 2.19. The evaluation and physical interpretation of (2-43) is similar to that
of (2-40).

To examine the accuracy of the technique, two examples will be considered.

Example 2.9(a)

The radiation intensity of an antenna is given by

Bysin@sin’¢, 0<6<m, 0<¢<
U®. ) = o sin 6 sin” ¢ <6<m <¢p=<m

0 elsewhere

The three-dimensional pattern of U (8, ¢) is shown in Figure 2.20.

Determine the maximum directivity numerically by using (2-41) with 6; and ¢; of
(2-38b) and (2-39b), respectively. Compare it with the exact value.

Solution: Let us divide the 6 and ¢ intervals each into 18 equals segments (N = M = 18).
Since 0 < ¢ < 7, then A¢; = w/M and (2-41) reduces to

o | 18 18
Paa=Bo(fg) | sint e | | Lsin’a
=1 =l
with
T
i:'_:'lo, i =1,2,3,...,1
é ’(18) 1109, . ;
s . o .
¢ =j(3g) =i0. j=123...18
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4
_ By sin (6) sin® (¢) {0 sbsm
/E-§§§§\§§\ U= . 0<p<m
%%\\ Elsewhere
AN
\\&
\
sin(0): ¢> \
|
//J"
sin2(¢); 0= /2 “,; y
7
/4
X
Figure 2.20 Three-dimensional pattern of the radiation of Examples 2.9(a,b).
Thus
N2 o 2~(° 2 0\12
Poa = Bo (ﬁ) [sin?(10°) + sin®(20°) + - - - + sin®(180°)]
Paa=Bo () 02 =B il
rad = DO 18 = Do 4
and An U, 4 16
T T
Dy = = = — =5.0929

T TPw Y4 7w

The exact value is given by

T ) T ) T o/ 7T2
Pmd=30fo 51n2¢d¢/0 sm29d9=5(5)30=7Bo

and 4n U, 4 16
= T 22 50929

Paa 724 7

which is the same as the value obtained numerically!
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Example 2.9(b)

Given the same radiation intensity as that in Example 2.9(a), determine the directivity using
(2-41) with 6; and ¢; of (2-38¢c) and (2-39c).
Solution: Again using 18 divisions in each interval, we can write (2-41) as

18 18
T \2 . .
P.q = By (E) Z; sin® (o} |:ZI: sin® 9,-:|
= =

with
T T
bi=—4+@G—1D—=5+G—-110°, i=1,2,3,...,18
36+(l )18 + (@ ) i
(0] —n+(' 1)”—5°+(' nie°, j=1,2,3 18
i = 36 J T J , J=12,3,...,

Because of the symmetry of the divisions about the 8 = 7/2 and ¢ = 7 /2 angles, we
can write

9 9
'7T 2 . .

Prad:Bo(E> 2) sin’ ¢, [2251&9,}

j=1 i=1

2

Py = Bo (%) 4[sin®(5°) + sin2(15°) + - - - + sin®(85°)]?
Pua =B <£)24(45)2—B (1)2(81)—3 z
rad — D0 18 . = Do 18 = Dy 2

which is identical to that of the previous example. Thus

dnUny 4 1
=B Una _ AT 16 50959
Prad 7'[2/4 T

Do

which again is equal to the exact value!

It is interesting to note that decreasing the number of divisions (M and/or N) to 9, 6,
4, and even 2 leads to the same answer, which also happens to be the exact value!
To demonstrate as to why the number of divisions does not affect the answer for
this pattern, let us refer to Figure 2.21 where we have plotted the sin? ¢ function and
divided the 0° < ¢ < 180° interval into six divisions. The exact value of the directivity
uses the area under the solid curve. Doing the problem numerically, we find the area
under the rectangles, which is shown shaded. Because of the symmetrical nature of the
function, it can be shown that the shaded area in section #1 (included in the numerical
evaluation) is equal to the blank area in section #1’ (left out by the numerical method).
The same is true for the areas in sections #2 and #2', and #3 and #3'. Thus, there
is a one-to-one compensation. Similar justification is applicable for the other number
of divisions.
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Figure 2.21 Digitized form of sin’ ¢ function.

It should be emphasized that all functions, even though they may contain some
symmetry, do not give the same answers independent of the number of divisions. As a
matter of fact, in most cases the answer only approaches the exact value as the number
of divisions is increased to a large number.

A MATLAB and FORTRAN computer program called Directivity has been devel-
oped to compute the maximum directivity of any antenna whose radiation intensity
is U = F (6, ¢) based on the formulation of (2-43). The intensity function F does
not have to be a function of both 8 and ¢. The numerical evaluations are made at
the trailing edge, as defined by (2-38b) and (2-39b). The program is included in the
attached CD. It contains a subroutine for which the intensity factor U = F (6, ¢) for
the required application must be specified by the user. As an illustration, the antenna
intensity U = sin6 sin? ¢ has been inserted in the subroutine. In addition, the upper
and lower limits of 6 and ¢ must be specified for each application of the same pattern.

2.8 ANTENNA EFFICIENCY

Associated with an antenna are a number of efficiencies and can be defined using
Figure 2.22. The total antenna efficiency ¢y is used to take into account losses at
the input terminals and within the structure of the antenna. Such losses may be due,
referring to Figure 2.22(b), to

1. reflections because of the mismatch between the transmission line and the antenna
2. I*R losses (conduction and dielectric)
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Figure 2.22 Reference terminals and losses of an antenna.

In general, the overall efficiency can be written as

€y = €recey (2-44)

where

ep = total efficiency (dimensionless)
e, = reflection (mismatch) efficiency = (1 — |T'|?) (dimensionless)
e, = conduction efficiency (dimensionless)
eq = dielectric efficiency (dimensionless)
I' = voltage reflection coefficient at the input terminals of the antenna
[T = (Zi, — Zo)/(Zin + Zp) where Z;,, = antenna input impedance,
Zy = characteristic impedance of the transmission line]
14T
1—|T|
Usually e. and e; are very difficult to compute, but they can be determined exper-
imentally. Even by measurements they cannot be separated, and it is usually more
convenient to write (2-44) as

VSWR = voltage standing wave ratio =

€0 = erecs = ecq(1 — T (2-45)
where e.; = e.e; = antenna radiation efficiency, which is used to relate the gain and

directivity.

2.9 GAIN

Another useful measure describing the performance of an antenna is the gain. Although
the gain of the antenna is closely related to the directivity, it is a measure that takes into
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account the efficiency of the antenna as well as its directional capabilities. Remember
that directivity is a measure that describes only the directional properties of the antenna,
and it is therefore controlled only by the pattern.

Gain of an antenna (in a given direction) is defined as “the ratio of the intensity, in a
given direction, to the radiation intensity that would be obtained if the power accepted
by the antenna were radiated isotropically. The radiation intensity corresponding to
the isotropically radiated power is equal to the power accepted (input) by the antenna
divided by 4r.” In equation form this can be expressed as

radiation intensity s Uue, ¢)

Gain =4 (dimensionless)  (2-46)

4 =
total input (accepted) power P;

In most cases we deal with relative gain, which is defined as “the ratio of the
power gain in a given direction to the power gain of a reference antenna in its refer-
enced direction.” The power input must be the same for both antennas. The reference
antenna is usually a dipole, horn, or any other antenna whose gain can be calculated
or it is known. In most cases, however, the reference antenna is a lossless isotropic
source. Thus

. 47U, ¢)
"~ P, (lossless isotropic source)

G (dimensionless) (2-46a)

When the direction is not stated, the power gain is usually taken in the direction of
maximum radiation.

Referring to Figure 2.22(a), we can write that the total radiated power (Prq) is
related to the total input power (P;,) by

Prag = ecq Py (2-47)

where e, is the antenna radiation efficiency (dimensionless) which is defined in (2-44),
(2-45) and Section 2.14 by (2-90). According to the IEEE Standards, “gain does not
include losses arising from impedance mismatches (reflection losses) and polarization
mismatches (losses).”

In this edition of the book we define two gains; one, referred to as gain (G),
and the other, referred to as absolute gain (Ggpy), that also takes into account the
reflection/mismatch losses represented in both (2-44) and (2-45).

Using (2-47) reduces (2-46a) to

U, ¢)
GO,d) =eq |4m (2-48)
Prad
which is related to the directivity of (2-16) and (2-21) by
GO, 9) =eaD(®, ) (2-49)

In a similar manner, the maximum value of the gain is related to the maximum direc-
tivity of (2-16a) and (2-23) by

Go =GO, P)lmax = €ca DO, ®)|max = €ca Do (2-49a)
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While (2-47) does take into account the losses of the antenna element itself, if does
not take into account the losses when the antenna element is connected to a transmis-
sion line, as shown in Figure 2.22. These connection losses are usually referred to as
reflections (mismatch) losses, and they are taken into account by introducing a reflec-
tion (mismatch) efficiency e,, which is related to the reflection coefficient as shown in
(2-45) or e, = (1 — |T'|?). Thus, we can introduce an absolute gain G, that takes into
account the reflection/mismatch losses (due to the connection of the antenna element
to the transmission line), and it can be written as

Gaps (0, 9) = .G (6, ¢) = (1 = TG0, $)

(2-49b)
=e.eqD0, ) =e,D(0, @)

where e, is the overall efficiency as defined in (2-44), (2-45). Similarly, the maximum
absolute gain Gy of (2-49a) is related to the maximum directivity Dy by

GOabs = Gabx(e, ¢)|max = erG(e’ ¢)|max = (1 - |F|2)G(6’ ¢)|max
(2-49¢)

erecdD(97 ¢)|max - eoD(Ga ¢)|max = eaDO

If the antenna is matched to the transmission line, that is, the antenna input impedance
Z;, is equal to the characteristic impedance Z. of the line (|I'| = 0), then the two gains
are equal (G s = G).

As was done with the directivity, we can define the partial gain of an antenna
for a given polarization in a given direction as ‘“‘that part of the radiation intensity
corresponding to a given polarization divided by the total radiation intensity that would
be obtained if the power accepted by the antenna were radiated isotropically.” With this
definition for the partial gain, then, in a given direction, “the total gain is the sum of the
partial gains for any two orthogonal polarizations.” For a spherical coordinate system,
the total maximum gain G for the orthogonal 6 and ¢ components of an antenna can
be written, in a similar form as was the maximum directivity in (2-17)—(2-17b), as

Go=Gy + G¢ (2-50)
while the partial gains Gy and G4 are expressed as

_ 47'L'U9

Go = (2-50a)
4nU
Gy = % (2-50b)

where

Uy = radiation intensity in a given direction contained in Ey field component
Uy = radiation intensity in a given direction contained in Ey4 field component
P;, = total input (accepted) power
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For many practical antennas an approximate formula for the gain, corresponding to
(2-27) or (2-27a) for the directivity, is

30,000

0 ——
CIPICLY!

(2-51)

In practice, whenever the term “gain” is used, it usually refers to the maximum gain
as defined by (2-49a) or (2-49c).

Usually the gain is given in terms of decibels instead of the dimensionless quantity
of (2-49a). The conversion formula is given by

Go(dB) = 10log;ylecq Do (dimensionless)] (2-52)

Example 2.10

A lossless resonant half-wavelength dipole antenna, with input impedance of 73 ohms, is
connected to a transmission line whose characteristic impedance is 50 ohms. Assuming that
the pattern of the antenna is given approximately by

U = Bysin’ 6

find the maximum absolute gain of this antenna.
Solution: Let us first compute the maximum directivity of the antenna. For this

U|max = Umax = BO

2 T b4 3 2
Pg = / / U@, $)sinb d d = 2;130[ sin*6do = B, (%)
0 0

0

Upax 16
® = — =1.697
Prad 37T

D0=47'[

Since the antenna was stated to be lossless, then the radiation efficiency e.; = 1.
Thus, the total maximum gain is equal to

Go = e.qDy = 1(1.697) = 1.697
Go(dB) = 10log;(1.697) = 2.297
which is identical to the directivity because the antenna is lossless.
There is another loss factor which is not taken into account in the gain. That is the loss

due to reflection or mismatch losses between the antenna (load) and the transmission line.
This loss is accounted for by the reflection efficiency of (2-44) or (2-45), and it is equal to

2
) = 0.965

73 — 50
,=(0 =T =(1-
e == ( ‘73+50

e, (dB) = 1010g,(0.965) = —0.155
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Therefore the overall efficiency is

ey = ereqq = 0.965
eo(dB) = —0.155

Thus, the overall losses are equal to 0.155 dB. The absolute gain is equal to

Goaps = e0Do = 0.965(1.697) = 1.6376
Goaps (dB) = 101og;((1.6376) = 2.142
The gain in dB can also be obtained by converting the directivity and radiation efficiency
in dB and then adding them. Thus,
ec.q(dB) = 10log;,(1.0) =0
Dy(dB) = 10log;((1.697) = 2.297
Go(dB) = e.4(dB) + Dy(dB) = 2.297

which is the same as obtained previously. The same procedure can be used for the absolute
gain.

2.10 BEAM EFFICIENCY

Another parameter that is frequently used to judge the quality of transmitting and
receiving antennas is the beam efficiency. For an antenna with its major lobe directed
along the z-axis (9 = 0), as shown in Figure 2.1(a), the beam efficiency (BE) is
defined by

BE power transmitted (received) within cone angle 6,

; ; (dimensionless)  (2-53)
power transmitted (received) by the antenna

where 6 is the half-angle of the cone within which the percentage of the total power
is to be found. Equation (2-53) can be written as

2w 9]
/ / U@, $)sind do dg
0 0

BE = (2-54)

2 T
/ / U8, ¢)siné do do
0 0

If 0, is chosen as the angle where the first null or minimum occurs (see Figure 2.1), then
the beam efficiency will indicate the amount of power in the major lobe compared to
the total power. A very high beam efficiency (between the nulls or minimums), usually
in the high 90s, is necessary for antennas used in radiometry, astronomy, radar, and
other applications where received signals through the minor lobes must be minimized.
The beam efficiencies of some typical rectangular and circular aperture antennas will
be discussed in Chapter 12.
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2.11 BANDWIDTH

The bandwidth of an antenna is defined as “the range of frequencies within which the
performance of the antenna, with respect to some characteristic, conforms to a specified
standard.” The bandwidth can be considered to be the range of frequencies, on either
side of a center frequency (usually the resonance frequency for a dipole), where the
antenna characteristics (such as input impedance, pattern, beamwidth, polarization, side
lobe level, gain, beam direction, radiation efficiency) are within an acceptable value
of those at the center frequency. For broadband antennas, the bandwidth is usually
expressed as the ratio of the upper-to-lower frequencies of acceptable operation. For
example, a 10:1 bandwidth indicates that the upper frequency is 10 times greater than
the lower. For narrowband antennas, the bandwidth is expressed as a percentage of the
frequency difference (upper minus lower) over the center frequency of the bandwidth.
For example, a 5% bandwidth indicates that the frequency difference of acceptable
operation is 5% of the center frequency of the bandwidth.

Because the characteristics (input impedance, pattern, gain, polarization, etc.) of an
antenna do not necessarily vary in the same manner or are even critically affected by
the frequency, there is no unique characterization of the bandwidth. The specifications
are set in each case to meet the needs of the particular application. Usually there is a
distinction made between pattern and input impedance variations. Accordingly pattern
bandwidth and impedance bandwidth are used to emphasize this distinction. Associated
with pattern bandwidth are gain, side lobe level, beamwidth, polarization, and beam
direction while input impedance and radiation efficiency are related to impedance
bandwidth. For example, the pattern of a linear dipole with overall length less than
a half-wavelength (I < A/2) is insensitive to frequency. The limiting factor for this
antenna is its impedance, and its bandwidth can be formulated in terms of the Q. The
Q of antennas or arrays with dimensions large compared to the wavelength, excluding
superdirective designs, is near unity. Therefore the bandwidth is usually formulated in
terms of beamwidth, side lobe level, and pattern characteristics. For intermediate length
antennas, the bandwidth may be limited by either pattern or impedance variations,
depending upon the particular application. For these antennas, a 2:1 bandwidth indicates
a good design. For others, large bandwidths are needed. Antennas with very large
bandwidths (like 40:1 or greater) have been designed in recent years. These are known
as frequency independent antennas, and they are discussed in Chapter 11.

The above discussion presumes that the coupling networks (transformers, baluns,
etc.) and/or the dimensions of the antenna are not altered in any manner as the frequency
is changed. It is possible to increase the acceptable frequency range of a narrowband
antenna if proper adjustments can be made on the critical dimensions of the antenna
and/or on the coupling networks as the frequency is changed. Although not an easy
or possible task in general, there are applications where this can be accomplished.
The most common examples are the antenna of a car radio and the “rabbit ears” of a
television. Both usually have adjustable lengths which can be used to tune the antenna
for better reception.

2.12 POLARIZATION

Polarization of an antenna in a given direction is defined as “the polarization of the
wave transmitted (radiated) by the antenna. Note: When the direction is not stated,
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the polarization is taken to be the polarization in the direction of maximum gain.” In
practice, polarization of the radiated energy varies with the direction from the center
of the antenna, so that different parts of the pattern may have different polarizations.

Polarization of a radiated wave is defined as “that property of an electromagnetic
wave describing the time-varying direction and relative magnitude of the electric-field
vector; specifically, the figure traced as a function of time by the extremity of the
vector at a fixed location in space, and the sense in which it is traced, as observed
along the direction of propagation.” Polarization then is the curve traced by the end
point of the arrow (vector) representing the instantaneous electric field. The field must
be observed along the direction of propagation. A typical trace as a function of time
is shown in Figures 2.23(a) and (b).

Major axis Minor axis

(b) Polarization ellipse

Figure 2.23 Rotation of a plane electromagnetic wave and its polarization ellipse at z = 0 as
a function of time.
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The polarization of a wave can be defined in terms of a wave radiated (transmitted)
or received by an antenna in a given direction. The polarization of a wave radiated
by an antenna in a specified direction at a point in the far field is defined as “the
polarization of the (locally) plane wave which is used to represent the radiated wave
at that point. At any point in the far field of an antenna the radiated wave can be
represented by a plane wave whose electric-field strength is the same as that of the
wave and whose direction of propagation is in the radial direction from the antenna. As
the radial distance approaches infinity, the radius of curvature of the radiated wave’s
phase front also approaches infinity and thus in any specified direction the wave appears
locally as a plane wave.” This is a far-field characteristic of waves radiated by all
practical antennas, and it is illustrated analytically in Section 3.6 of Chapter 3. The
polarization of a wave received by an antenna is defined as the “polarization of a
plane wave, incident from a given direction and having a given power flux density,
which results in maximum available power at the antenna terminals.”

Polarization may be classified as linear, circular, or elliptical. If the vector that
describes the electric field at a point in space as a function of time is always directed
along a line, the field is said to be linearly polarized. In general, however, the figure
that the electric field traces is an ellipse, and the field is said to be elliptically polarized.
Linear and circular polarizations are special cases of elliptical, and they can be obtained
when the ellipse becomes a straight line or a circle, respectively. The figure of the elec-
tric field is traced in a clockwise (CW) or counterclockwise (CCW) sense. Clockwise
rotation of the electric-field vector is also designated as right-hand polarization and
counterclockwise as left-hand polarization.

In general, the polarization characteristics of an antenna can be represented by its
polarization pattern whose one definition is “the spatial distribution of the polarizations
of a field vector excited (radiated) by an antenna taken over its radiation sphere. When
describing the polarizations over the radiation sphere, or portion of it, reference lines
shall be specified over the sphere, in order to measure the tilt angles (see tilt angle) of the
polarization ellipses and the direction of polarization for linear polarizations. An obvious
choice, though by no means the only one, is a family of lines tangent at each point on
the sphere to either the 6 or ¢ coordinate line associated with a spherical coordinate
system of the radiation sphere. At each point on the radiation sphere the polarization is
usually resolved into a pair of orthogonal polarizations, the co-polarization and cross
polarization. To accomplish this, the co-polarization must be specified at each point on
the radiation sphere.” “Co-polarization represents the polarization the antenna is intended
to radiate (receive) while cross-polarization represents the polarization orthogonal to a
specified polarization, which is usually the co-polarization.”

“For certain linearly polarized antennas, it is common practice to define the co-
polarization in the following manner: First specify the orientation of the co-polar
electric-field vector at a pole of the radiation sphere. Then, for all other directions
of interest (points on the radiation sphere), require that the angle that the co-polar
electric-field vector makes with each great circle line through the pole remain constant
over that circle, the angle being that at the pole.”

“In practice, the axis of the antenna’s main beam should be directed along the polar axis
of the radiation sphere. The antenna is then appropriately oriented about this axis to align
the direction of its polarization with that of the defined co-polarization at the pole.” “This
manner of defining co-polarization can be extended to the case of elliptical polarization
by defining the constant angles using the major axes of the polarization ellipses rather
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than the co-polar electric-field vector. The sense of polarization (rotation) must also be
specified.”

The polarization of the wave radiated by the antenna can also be represented on
the Poincaré sphere [13]-[16]. Each point on the Poincaré sphere represents a unique
polarization. The north pole represents left circular polarization, the south pole rep-
resents right circular, and points along the equator represent linear polarization of
different tilt angles. All other points on the Poincaré sphere represent elliptical polar-
ization. For details, see Figure 17.24 of Chapter 17.

The polarization of an antenna is measured using techniques described in Chapter 17.

2.12.1 Linear, Circular, and Elliptical Polarizations

The instantaneous field of a plane wave, traveling in the negative z direction, can be
written as
G(i0) = 8 (1) +8,8,(zi1) (2-55)

According to (2-5), the instantaneous components are related to their complex coun-
terparts by

€. (2:1) = Re[E, e/ 9] = Re[ Eype! 5400

= E,cos(wt + kz + ¢,) (2-56)
€,(z;1) = Re[E, ~ e/ @] = Re[ E,, e/ @ Thit02)]
= E,,cos(wt + kz + ¢,) (2-57)

where E,, and E,, are, respectively, the maximum magnitudes of the x and y com-
ponents.

A. Linear Polarization
For the wave to have linear polarization, the time-phase difference between the two
components must be

Ap=¢,—¢,=nm, n=0,1,23,... (2-58)

B. Circular Polarization

Circular polarization can be achieved only when the magnitudes of the two components
are the same and the time-phase difference between them is odd multiples of /2.
That is,

[€x] = [€,| ™ Exo = Eyo (2-59)
+ (G +2mm,n=0,1,2,... forCW (2-60)

Ap =y — ¢ = |
—G+2mm,n=0,1,2,... for CCW (2-61)

If the direction of wave propagation is reversed (i.e., 4z direction), the phases in (2-60)
and (2-61) for CW and CCW rotation must be interchanged.

C. Elliptical Polarization
Elliptical polarization can be attained only when the time-phase difference between
the two components is odd multiples of 7/2 and their magnitudes are not the same or



74 FUNDAMENTAL PARAMETERS OF ANTENNAS

when the time-phase difference between the two components is not equal to multiples
of /2 (irrespective of their magnitudes). That is,

[€x| # €3] ™ Exo # Eyo

when A = ¢, — ¢, = [ + (3 +2n)7w  for CW (2-62a)
n=0,1,2,... { — (3 +2n)7  for CCW (2-62b)

or
Ap = ¢y — by # ig” — { >0 for CW (2-63)
n=0,1,2,3,... | <0 for CCW (2-64)

For elliptical polarization, the curve traced at a given position as a function of time
is, in general, a tilted ellipse, as shown in Figure 2.23(b). The ratio of the major axis
to the minor axis is referred to as the axial ratio (AR), and it is equal to
major axis  OA

AR =

= —=——, 1 <AR<x (2-65)
minor axis OB

where

OA = [HE2 + B2, + [EY, + B +2E2 B2, cosap)]*)]> (2-66)

yo xo™~yo

OB = [HE2 + E2, — [E*, + B+ 2E2 E2, cos2ap)] )] > (2-67)

yo xo™~yo

The tilt of the ellipse, relative to the y axis, is represented by the angle t given by

T Lt | 2ExEro cag (2-68)
T =—— —tan —  COS -
272 £, - B2,

When the ellipse is aligned with the principal axes [t = nw/2,n =0,1,2,...], the
major (minor) axis is equal to E,,(E,,) or Ey,(E,) and the axial ratio is equal to
Exo/Eyo or Eyo/Exo-

SUMMARY

We will summarize the preceding discussion on polarization by stating the general
characteristics, and the necessary and sufficient conditions that the wave must have in
order to possess linear, circular or elliptical polarization.

Linear Polarization A time-harmonic wave is linearly polarized at a given point
in space if the electric-field (or magnetic-field) vector at that point is always oriented
along the same straight line at every instant of time. This is accomplished if the field
vector (electric or magnetic) possesses:

a. Only one component, or

b. Two orthogonal linear components that are in time phase or 180° (or multiples
of 180°) out-of-phase.
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Circular Polarization A time-harmonic wave is circularly polarized at a given point
in space if the electric (or magnetic) field vector at that point traces a circle as a function
of time.

The necessary and sufficient conditions to accomplish this are if the field vector
(electric or magnetic) possesses all of the following:

a. The field must have two orthogonal linear components, and
b. The two components must have the same magnitude, and
c. The two components must have a time-phase difference of odd multiples of 90°.

The sense of rotation is always determined by rotating the phase-leading component
toward the phase-lagging component and observing the field rotation as the wave is
viewed as it travels away from the observer. If the rotation is clockwise, the wave
is right-hand (or clockwise) circularly polarized; if the rotation is counterclockwise,
the wave is left-hand (or counterclockwise) circularly polarized. The rotation of the
phase-leading component toward the phase-lagging component should be done along
the angular separation between the two components that is less than 180°. Phases equal
to or greater than 0° and less than 180° should be considered leading whereas those
equal to or greater than 180° and less than 360° should be considered lagging.

Elliptical Polarization A time-harmonic wave is elliptically polarized if the tip of the
field vector (electric or magnetic) traces an elliptical locus in space. At various instants
of time the field vector changes continuously with time at such a manner as to describe
an elliptical locus. It is right-hand (clockwise) elliptically polarized if the field vector
rotates clockwise, and it is left-hand (counterclockwise) elliptically polarized if the field
vector of the ellipse rotates counterclockwise [13]. The sense of rotation is determined
using the same rules as for the circular polarization. In addition to the sense of rotation,
elliptically polarized waves are also specified by their axial ratio whose magnitude is
the ratio of the major to the minor axis.

A wave is elliptically polarized if it is not linearly or circularly polarized. Although
linear and circular polarizations are special cases of elliptical, usually in practice ellip-
tical polarization refers to other than linear or circular. The necessary and sufficient
conditions to accomplish this are if the field vector (electric or magnetic) possesses all
of the following:

a. The field must have two orthogonal linear components, and
b. The two components can be of the same or different magnitude.

c. (1) If the two components are not of the same magnitude, the time-phase differ-
ence between the two components must not be 0° or multiples of 180° (because
it will then be linear). (2) If the two components are of the same magnitude, the
time-phase difference between the two components must not be odd multiples of
90° (because it will then be circular).

If the wave is elliptically polarized with two components not of the same magnitude
but with odd multiples of 90° time-phase difference, the polarization ellipse will not be
tilted but it will be aligned with the principal axes of the field components. The major
axis of the ellipse will align with the axis of the field component which is larger of the
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two, while the minor axis of the ellipse will align with the axis of the field component
which is smaller of the two.

2.12.2 Polarization Loss Factor and Efficiency

In general, the polarization of the receiving antenna will not be the same as the polar-
ization of the incoming (incident) wave. This is commonly stated as ‘“polarization
mismatch.” The amount of power extracted by the antenna from the incoming signal
will not be maximum because of the polarization loss. Assuming that the electric field
of the incoming wave can be written as

E; = puE; (2-69)

where p,, is the unit vector of the wave, and the polarization of the electric field of
the receiving antenna can be expressed as

E, = f)aEa (2-70)

where P, is its unit vector (polarization vector), the polarization loss can be taken into
account by introducing a polarization loss factor (PLF). It is defined, based on the
polarization of the antenna in its transmitting mode, as

PLF = |p,, + p,|* = | cos ¢, |* (dimensionless) (2-71)

where 1/, is the angle between the two unit vectors. The relative alignment of the
polarization of the incoming wave and of the antenna is shown in Figure 2.24. If the
antenna is polarization matched, its PLF will be unity and the antenna will extract
maximum power from the incoming wave.

Another figure of merit that is used to describe the polarization characteristics of a
wave and that of an antenna is the polarization efficiency (polarization mismatch or
loss factor) which is defined as “the ratio of the power received by an antenna from
a given plane wave of arbitrary polarization to the power that would be received by
the same antenna from a plane wave of the same power flux density and direction of

y
|

Figure 2.24 Polarization unit vectors of incident wave (p,,) and antenna (p,), and polarization
loss factor (PLF).
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propagation, whose state of polarization has been adjusted for a maximum received
power.” This is similar to the PLF and it is expressed as

_ e EMP

= — 2-71
|ee|2|Emc|2 ( a)

De

where

£, = vector effective length of the antenna
E™ = incident electric field

The vector effective length £, of the antenna has not yet been defined, and it is
introduced in Section 2.15. It is a vector that describes the polarization characteristics
of the antenna. Both the PLF and p, lead to the same answers.

The conjugate (*) is not used in (2-71) or (2-71a) so that a right-hand circularly
polarized incident wave (when viewed in its direction of propagation) is matched to
right-hand circularly polarized receiving antenna (when its polarization is determined
in the transmitting mode). Similarly, a left-hand circularly polarized wave will be
matched to a left-hand circularly polarized antenna.

To illustrate the principle of polarization mismatch, two examples are considered.

Example 2.11

The electric field of a linearly polarized electromagnetic wave given by
E; = a,Eo(x, y)e /"
is incident upon a linearly polarized antenna whose electric-field polarization is expressed as
E, ~ @ +4,)E(r,0,9)

Find the polarization loss factor (PLF).
Solution: For the incident wave

6w = ﬁx
and for the antenna 1
ﬁa = = (ﬁx +4a )
NG ’

The PLF is then equal to

I
V2

PLF = |py - p,|° = |8, - —=(@, +4,)]> =1

which in dB is equal to

PLF (dB) = 10log,, PLF (dimensionless) = 101og;,(0.5) = —3
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Figure 2.25 Polarization loss factors (PLF) for aperture and linear wire antennas.

Even though in Example 2.11 both the incoming wave and the antenna are linearly
polarized, there is a 3-dB loss in extracted power because the polarization of the
incoming wave is not aligned with the polarization of the antenna. If the polarization
of the incoming wave is orthogonal to the polarization of the antenna, then there will
be no power extracted by the antenna from the incoming wave and the PLF will be
zero or —oo dB. In Figures 2.25(a,b) we illustrate the polarization loss factors (PLF)
of two types of antennas: wires and apertures.

We now want to consider an example where the polarization of the antenna and the
incoming wave are described in terms of complex polarization vectors.

Example 2.12

A right-hand (clockwise) circularly polarized wave radiated by an antenna, placed at some
distance away from the origin of a spherical coordinate system, is traveling in the inward
radial direction at an angle (6, ¢) and it is impinging upon a right-hand circularly polarized
receiving antenna placed at the origin (see Figures 2.1 and 17.23 for the geometry of the
coordinate system). The polarization of the receiving antenna is defined in the transmitting
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mode, as desired by the definition of the IEEE. Assuming the polarization of the incident
wave is represented by
Ey = 9 + jay)E(r, 0, ¢)

Determine the polarization loss factor (PLF).

Solution: The polarization of the incident right-hand circularly polarized wave traveling
along the —r radial direction is described by the unit vector

while that of the receiving antenna, in the transmitting mode, is represented by the unit vector

(2
a ﬁ
Therefore the polarization loss factor is
A oAl 2
PLF = [py P, =Z|1+1| =1=0dB

Since the polarization of the incoming wave matches (including the sense of rotation) the
polarization of the receiving antenna, there should not be any losses. Obviously the answer
matches the expectation.

Based upon the definitions of the wave transmitted and received by an antenna, the
polarization of an antenna in the receiving mode is related to that in the fransmitting
mode as follows:

1. “In the same plane of polarization, the polarization ellipses have the same axial
ratio, the same sense of polarization (rotation) and the same spatial orientation.

2. “Since their senses of polarization and spatial orientation are specified by viewing
their polarization ellipses in the respective directions in which they are propa-
gating, one should note that:

a. Although their senses of polarization are the same, they would appear to be
opposite if both waves were viewed in the same direction.

b. Their tilt angles are such that they are the negative of one another with respect
to a common reference.”

Since the polarization of an antenna will almost always be defined in its transmitting
mode, according to the IEEE Std 145-1983, “the receiving polarization may be used to
specify the polarization characteristic of a nonreciprocal antenna which may transmit
and receive arbitrarily different polarizations.”

The polarization loss must always be taken into account in the link calculations
design of a communication system because in some cases it may be a very critical
factor. Link calculations of communication systems for outer space explorations are
very stringent because of limitations in spacecraft weight. In such cases, power is a
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Figure 2.26 Geometry of elliptically polarized cross-dipole antenna.

limiting consideration. The design must properly take into account all loss factors to
ensure a successful operation of the system.

An antenna that is elliptically polarized is that composed of two crossed dipoles,
as shown in Figure 2.26. The two crossed dipoles provide the two orthogonal field
components that are not necessarily of the same field intensity toward all observation
angles. If the two dipoles are identical, the field intensity of each along zenith (per-
pendicular to the plane of the two dipoles) would be of the same intensity. Also, if
the two dipoles were fed with a 90° degree time-phase difference (phase quadrature),
the polarization along zenith would be circular and elliptical toward other directions.
One way to obtain the 90° time-phase difference A¢ between the two orthogonal field
components, radiated respectively by the two dipoles, is by feeding one of the two
dipoles with a transmission line which is A/4 longer or shorter than that of the other
[Ap = kAL = 2r/X)(A/4) = 7 /2]. One of the lengths (longer or shorter) will provide
right-hand (CW) rotation while the other will provide left-hand (CCW) rotation.

2.13 INPUT IMPEDANCE

Input impedance is defined as “the impedance presented by an antenna at its terminals
or the ratio of the voltage to current at a pair of terminals or the ratio of the appropriate
components of the electric to magnetic fields at a point.” In this section we are primarily
interested in the input impedance at a pair of terminals which are the input terminals
of the antenna. In Figure 2.27(a) these terminals are designated as a — b. The ratio of
the voltage to current at these terminals, with no load attached, defines the impedance
of the antenna as

Zi=Rs+jXyu (2-72)
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Figure 2.27 Transmitting antenna and its equivalent circuits.

where

Z 4 = antenna impedance at terminals a—b (ohms)
R, = antenna resistance at terminals a—b (ohms)
= antenna reactance at terminals a—b (ohms)

b
>
|

In general the resistive part of (2-72) consists of two components; that is

where

R, = radiation resistance of the antenna
R; = loss resistance of the antenna

81

Ry=R.+ R, (2-73)

The radiation resistance will be considered in more detail in later chapters, and it will

be illustrated with examples.
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If we assume that the antenna is attached to a generator with internal impedance
Z, =R, + jX, (2-74)

where

R, = resistance of generator impedance (ohms)
X, = reactance of generator impedance (ohms)

and the antenna is used in the transmitting mode, we can represent the antenna and
generator by an equivalent circuit* shown in Figure 2.27(b). To find the amount of
power delivered to R, for radiation and the amount dissipated in R; as heat (>R /2),
we first find the current developed within the loop which is given by

V, V, Ve
I, === = . (A) (2-75)
Zt ZA+Zg (Rr+RL+Rg)+J(XA+Xg)
and its magnitude by
V,
Vel (2-75a)

I, | =
el [(R, + Ry + R)* + (Xa + X,)2]'/2

where V, is the peak generator voltage. The power delivered to the antenna for radiation
is given by

1
P, = ~||°R, =

[Vel? R,
)

2 (R +RL+R)*+ (X + Xg)2:| W) (2-76)

and that dissipated as heat by

1 |Vel?
P, = —|I,|’R, = —&
L 2|(g| L 2

R,
(R + R + R)> + (X4 + X,)?

] W) 2-77)

The remaining power is dissipated as heat on the internal resistance R, of the generator,
and it is given by

Py

VP [ R,

2 LR+ R+ R+ (Xa+ Xg)Z} W) (2-78)

The maximum power delivered to the antenna occurs when we have conjugate
matching; that is when

R+ R, =R, (2-79)

X4 =—X, (2-80)

*This circuit can be used to represent small and simple antennas. It cannot be used for antennas with lossy

dielectric or antennas over lossy ground because their loss resistance cannot be represented in series with
the radiation resistance.
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For this case

Vel* [ R, |V, | R,
P = = (2-81)
2 L4(R +Rp)? 8 L(R +Rp)?
PL= Vel [__Re (2-82)
T8 LR+ R
V.’ R V,|? 1 V,|?
p, = Vel A A 083
8 L(R + RL)? 8 R, + R, 8R,
From (2-81)—(2-83), it is clear that
P,=P. + P = |Vg|2 Rg _ |Vg|2 Rr+RL (2-84)
CTUTET R R AR 8 (R R?
The power supplied by the generator during conjugate matching is
P, = ! IF = 1v Y _ Wl ! (W) (2-85)
P28 T2 8 2R +R)| 4 | R +R,

Of the power that is provided by the generator, half is dissipated as heat in the inter-
nal resistance (Rg) of the generator and the other half is delivered to the antenna.
This only happens when we have conjugate matching. Of the power that is deliv-
ered to the antenna, part is radiated through the mechanism provided by the radiation
resistance and the other is dissipated as heat which influences part of the overall effi-
ciency of the antenna. If the antenna is lossless and matched to the transmission line
(e, = 1), then half of the total power supplied by the generator is radiated by the
antenna during conjugate matching, and the other half is dissipated as heat in the
generator. Thus, to radiate half of the available power through R, you must dissipate
the other half as heat in the generator through R,. These two powers are, respec-
tively, analogous to the power transferred to the load and the power scattered by
the antenna in the receiving mode. In Figure 2.27 it is assumed that the generator
is directly connected to the antenna. If there is a transmission line between the two,
which is usually the case, then Z, represents the equivalent impedance of the gen-
erator transferred to the input terminals of the antenna using the impedance transfer
equation. If, in addition, the transmission line is lossy, then the available power to
be radiated by the antenna will be reduced by the losses of the transmission line.
Figure 2.27(c) illustrates the Norton equivalent of the antenna and its source in the
transmitting mode.

The use of the antenna in the receiving mode is shown in Figure 2.28(a). The inci-
dent wave impinges upon the antenna, and it induces a voltage Vy which is analogous
to V, of the transmitting mode. The Thevenin equivalent circuit of the antenna and
its load is shown in Figure 2.28(b) and the Norton equivalent in Figure 2.28(c). The
discussion for the antenna and its load in the receiving mode parallels that for the
transmitting mode, and it will not be repeated here in detail. Some of the results will
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Figure 2.28 Antenna and its equivalent circuits in the receiving mode.

be summarized in order to discuss some subtle points. Following a procedure similar
to that for the antenna in the transmitting mode, it can be shown using Figure 2.28 that

in the receiving mode under conjugate matching (R, + R, = Ry and X4 = —X7) the
powers delivered to Ry, R,, and R, are given, respectively, by
Vi*’T R Vr|? 1 Vr|?
Py — [Vrl T _ [Vrl _ [Vrl (2-86)
8 _(Rr + RL)2 8 Rr + RL 8RT
Vrl2 T R, Vr|? R,
P — [Vrl _ [Vrl (2-87)
2 [ 4(R, + Rp)? 8 (R, + Rp)?
vil*[ R
P, = [Vrl L (2-88)
8 _(Rr + RL)Z
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while the induced (collected or captured) is

1 1 Vi \Vr|? 1
P. = IF = -V T = 2-89
cT T T T|:2(R,+RL)] 4 R, + R, ( )

These are analogous, respectively, to (2-81)—(2-83) and (2-85). The power P, of (2-87)
delivered to R, is referred to as scattered (or reradiated) power. It is clear through
(2-86)—(2-89) that under conjugate matching of the total power collected or captured
[P. of (2-89)] half is delivered to the load Ry [Pr of (2-86)] and the other half is
scattered or reradiated through R, [P, of (2-87)] and dissipated as heat through R; [P,
of (2-88)]. If the losses are zero (R, = 0), then half of the captured power is delivered
to the load and the other half is scattered. This indicates that in order to deliver
half of the power to the load you must scatter the other half. This becomes important
when discussing effective equivalent areas and aperture efficiencies, especially for high
directivity aperture antennas such as waveguides, horns, and reflectors with aperture
efficiencies as high as 80 to 90%. Aperture efficiency (e,,) is defined by (2-100) and
is the ratio of the maximum effective area to the physical area. The effective area is
used to determine the power delivered to the load, which under conjugate matching
is only one-half of that intercepted; the other half is scattered and dissipated as heat.
For a lossless antenna (R; = 0) under conjugate matching, the maximum value of the
effective area is equal to the physical area (e, = 1) and the scattering area is also
equal to the physical area. Thus half of the power is delivered to the load and the other
half is scattered. Using (2-86) to (2-89) we conclude that even though the aperture
efficiencies are higher than 50% (they can be as large as 100%) all of the power that
is captured by the antenna is not delivered to the load but it includes that which is
scattered plus dissipated as heat by the antenna. The most that can be delivered to
the load is only half of that captured and that is only under conjugate matching and
lossless transmission line.

The input impedance of an antenna is generally a function of frequency. Thus the
antenna will be matched to the interconnecting transmission line and other associated
equipment only within a bandwidth. In addition, the input impedance of the antenna
depends on many factors including its geometry, its method of excitation, and its
proximity to surrounding objects. Because of their complex geometries, only a limited
number of practical antennas have been investigated analytically. For many others, the
input impedance has been determined experimentally.

2.14 ANTENNA RADIATION EFFICIENCY

The antenna efficiency that takes into account the reflection, conduction, and dielec-
tric losses was discussed in Section 2.8. The conduction and dielectric losses of an
antenna are very difficult to compute and in most cases they are measured. Even with
measurements, they are difficult to separate and they are usually lumped together to
form the e, efficiency. The resistance R; is used to represent the conduction-dielectric
losses.

The conduction-dielectric efficiency e, is defined as the ratio of the power delivered
to the radiation resistance R, to the power delivered to R, and Ry . Using (2-76) and
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(2-77), the radiation efficiency can be written as

Rr . .
€cd = [m} (dimensionless) (2-90)

For a metal rod of length [ and uniform cross-sectional area A, the dc resistance is
given by

11
R;. = —— (ohms) (2-90a)
oA

If the skin depth §[§ = /2/(wwo )] of the metal is very small compared to the smallest
diagonal of the cross section of the rod, the current is confined to a thin layer near the
conductor surface. Therefore the high-frequency resistance can be written, based on a
uniform current distribution, as

[ I Joug
Ry=—R, = — | — h 2-90b
W= 2\ 29 (ohms) ( )

where P is the perimeter of the cross section of the rod (P = C = 2xb for a circular
wire of radius b), Ry is the conductor surface resistance, w is the angular frequency,
Wo is the permeability of free-space, and o is the conductivity of the metal.

Example 2.13

A resonant half-wavelength dipole is made out of copper (o = 5.7 x 107S/m) wire. Deter-
mine the conduction-dielectric (radiation) efficiency of the dipole antenna at f = 100 MHz
if the radius of the wire b is 3 x 10*A, and the radiation resistance of the A /2 dipole is
73 ohms.

Solution: At f = 10° Hz

A=
l:

C =27b =213 x 10791 = 67 x 107*2

For a A/2 dipole with a sinusoidal current distribution R; = %Rhf where Ry is given by
(2-90b). See Problem 2.52. Therefore,

1 0.25 7(10%) (4w x 1077)
Ry = =Ry = = 0.349 ohms
2 6 x 10— 5.7 x 107
Thus,
. . 73
e.q(dimensionless) = ————— = 0.9952 = 99.52%
73 + 0.349

e.q(dB) = 101log;;(0.9905) = —0.02
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2.15 ANTENNA VECTOR EFFECTIVE LENGTH AND EQUIVALENT AREAS

An antenna in the receiving mode, whether it is in the form of a wire, horn, aperture,
array, dielectric rod, etc., is used to capture (collect) electromagnetic waves and to
extract power from them, as shown in Figures 2.29(a) and (b). For each antenna, an
equivalent length and a number of equivalent areas can then be defined.

These equivalent quantities are used to describe the receiving characteristics of an
antenna, whether it be a linear or an aperture type, when a wave is incident upon
the antenna.

2.15.1 Vector Effective Length

The effective length of an antenna, whether it be a linear or an aperture antenna, is
a quantity that is used to determine the voltage induced on the open-circuit terminals

E-field of
plane wave

Direction of
propagation

12

12

|

(a) Dipole antenna in receiving mode

E-field of
plane wave

Direction of
propagation

Receiver

(b) Aperture antenna in receiving mode

Figure 2.29 Uniform plane wave incident upon dipole and aperture antennas.
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of the antenna when a wave impinges upon it. The vector effective length £, for an
antenna is usually a complex vector quantity represented by

£.(6, @) = 9lp (6, @) + aply (6, ¢) (2-91)

It should be noted that it is also referred to as the effective height. It is a far-field
quantity and it is related to the far-zone field E, radiated by the antenna, with current
I;; in its terminals, by [13]—[18]

E, = 8 Ep + 8y Ey = —jn dn g p-itr (2-92)
a = Ag Ly pLp = J774nre€

The effective length represents the antenna in its transmitting and receiving modes, and
it is particularly useful in relating the open-circuit voltage V,. of receiving antennas.
This relation can be expressed as

V,e =E -4, (2-93)

where

V,. = open-circuit voltage at antenna terminals
E' = incident electric field
£, = vector effective length

In (2-93) V,,. can be thought of as the voltage induced in a linear antenna of length £,
when £, and E! are linearly polarized [19], [20]. From the relation of (2-93) the effective
length of a linearly polarized antenna receiving a plane wave in a given direction is
defined as “the ratio of the magnitude of the open-circuit voltage developed at the
terminals of the antenna to the magnitude of the electric-field strength in the direction
of the antenna polarization. Alternatively, the effective length is the length of a thin
straight conductor oriented perpendicular to the given direction and parallel to the
antenna polarization, having a uniform current equal to that at the antenna terminals
and producing the same far-field strength as the antenna in that direction.”

In addition, as shown in Section 2.12.2, the antenna vector effective length is used
to determine the polarization efficiency of the antenna. To illustrate the usefulness of
the vector effective length, let us consider an example.

Example 2.14
The far-zone field radiated by a small dipole of length / < A/10 and with a triangular current
distribution, as shown in Figure 4.4, is derived in Section 4.3 of Chapter 4 and it is given
by (4-36a), or

. innleijkr .
n———— sinf

B =3 8mr

Determine the vector effective length of the antenna.
Solution: According to (2-92), the vector effective length is

[
£, = —8p—sinf
2
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This indicates, as it should, that the effective length is a function of the direction
angle 0, and its maximum occurs when 6 = 90°. This tells us that the maximum open-
circuit voltage at the dipole terminals occurs when the incident direction of the wave of
Figure 2.29(a) impinging upon the small dipole antenna is normal to the axis (length)
of the dipole (& = 90°). This is expected since the dipole has a radiation pattern whose
maximum is in the & = 90°. In addition, the effective length of the dipole to produce
the same output open-circuit voltage is only half (50%) of its physical length if it were
replaced by a thin conductor having a uniform current distribution (it can be shown that
the maximum effective length of an element with an ideal uniform current distribution
is equal to its physical length).

2.15.2 Antenna Equivalent Areas

With each antenna, we can associate a number of equivalent areas. These are used
to describe the power capturing characteristics of the antenna when a wave impinges
on it. One of these equivalent areas is the effective area (aperture), which in a given
direction is defined as “the ratio of the available power at the terminals of a receiving
antenna to the power flux density of a plane wave incident on the antenna from that
direction, the wave being polarization-matched to the antenna. If the direction is not
specified, the direction of maximum radiation intensity is implied.” In equation form
it is written as

Pr_ |Ir|*Rr/2

A, =
Wi Wi

(2-94)

where

A, = effective area (effective aperture) (m?)
Pr = power delivered to the load (W)
W; = power density of incident wave (W/m?)

The effective aperture is the area which when multiplied by the incident power
density gives the power delivered to the load. Using the equivalent of Figure 2.28, we
can write (2-94) as

A |Vr|? Rt
e = > 5 (2-95)
2W; [ (R 4+ Ry +Rr)*+ (Xa+ X7)

Under conditions of maximum power transfer (conjugate matching), R, + R = Rt

and X4 = — X7, the effective area of (2-95) reduces to the maximum effective aperture
given by
Vr|? R Vr? 1
A, = |Vr T _ v (2-96)
8W; L(RL + R,)? 8W; LR, + Ry

When (2-96) is multiplied by the incident power density, it leads to the maximum
power delivered to the load of (2-86).

All of the power that is intercepted, collected, or captured by an antenna is not
delivered to the load, as we have seen using the equivalent circuit of Figure 2.28. In
fact, under conjugate matching only half of the captured power is delivered to the
load; the other half is scattered and dissipated as heat. Therefore to account for the
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scattered and dissipated power we need to define, in addition to the effective area, the
scattering, loss and capture equivalent areas. In equation form these can be defined
similarly to (2-94)—(2-96) for the effective area.

The scattering area is defined as the equivalent area when multiplied by the incident
power density is equal to the scattered or reradiated power. Under conjugate matching
this is written, similar to (2-96), as

|Vr|? R,
Ay = 2-97
8W; [(RL + Rr)2] &9

which when multiplied by the incident power density gives the scattering power of (2-
87).

The loss area is defined as the equivalent area, which when multiplied by the inci-
dent power density leads to the power dissipated as heat through R;. Under conjugate
matching this is written, similar to (2-96), as

|Vr 2 R,
Ar = 2-98
T sw, [(RL +Rr)2} (2-98)

which when multiplied by the incident power density gives the dissipated power of (2-
88).

Finally the capture area is defined as the equivalent area, which when multiplied by
the incident power density leads to the total power captured, collected, or intercepted
by the antenna. Under conjugate matching this is written, similar to (2-96), as

Vel> TRy + R, + R
_Irl[r+ +Li| (2-99)

© 8W; L (RL+R)?

When (2-99) is multiplied by the incident power density, it leads to the captured power
of (2-89). In general, the total capture area is equal to the sum of the other three, or

Capture Area = Effective Area + Scattering Area + Loss Area

This is apparent under conjugate matching using (2-96)—(2-99). However, it holds even
under nonconjugate matching conditions.

Now that the equivalent areas have been defined, let us introduce the aperture
efficiency €,, of an antenna, which is defined as the ratio of the maximum effective
area A, of the antenna to its physical area A, or

Ao maximum effective area

€ap = = - (2-100)
A, physical area

For aperture type antennas, such as waveguides, horns, and reflectors, the maximum
effective area cannot exceed the physical area but it can equal it (A., < A, or 0 <
€4p < 1). Therefore the maximum value of the aperture efficiency cannot exceed unity
(100%). For a lossless antenna (R; = 0) the maximum value of the scattering area is
also equal to the physical area. Therefore even though the aperture efficiency is greater
than 50%, for a lossless antenna under conjugate matching only half of the captured
power is delivered to the load and the other half is scattered.
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We can also introduce a partial effective area of an antenna for a given polarization
in a given direction, which is defined as “the ratio of the available power at the
terminals of a receiving antenna to the power flux density of a plane wave incident
on the antenna from that direction and with a specified polarization differing from the
receiving polarization of the antenna.”

The effective area of an antenna is not necessarily the same as the physical aperture.
It will be shown in later chapters that aperture antennas with uniform amplitude and
phase field distributions have maximum effective areas equal to the physical areas;
they are smaller for nonuniform field distributions. In addition, the maximum effective
area of wire antennas is greater than the physical area (if taken as the area of a cross
section of the wire when split lengthwise along its diameter). Thus the wire antenna
can capture much more power than is intercepted by its physical size! This should not
come as a surprise. If the wire antenna would only capture the power incident on its
physical size, it would be almost useless. So electrically, the wire antenna looks much
bigger than its physical stature.

To illustrate the concept of effective area, especially as applied to a wire antenna,
let us consider an example. In later chapters, we will consider examples of aper-
ture antennas.

Example 2.15

A uniform plane wave is incident upon a very short lossless dipole (I < 1), as shown in
Figure 2.29(a). Find the maximum effective area assuming that the radiation resistance of
the dipole is R, = 80(;l/A)?, and the incident field is linearly polarized along the axis of
the dipole.

Solution: For R; = 0, the maximum effective area of (2-96) reduces to

Vel T 1
A, = Vrl” [ 1
8W; LR,
Since the dipole is very short, the induced current can be assumed to be constant and of
uniform phase. The induced voltage is

Vr = El
where
Vr = induced voltage on the dipole
E = electric field of incident wave

| = length of dipole

For a uniform plane wave, the incident power density can be written as

E2
i = 2
where 7 is the intrinsic impedance of the medium (~120 ohms for a free-space medium).

Thus
(E)? 312 >

= =— =0.1194
8(EZ%/2n) (807212 /12) 87

em
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The above value is only valid for a lossless antenna (the losses of a short dipole are
usually significant). If the loss resistance is equal to the radiation resistance (R, =
R,) and the sum of the two is equal to the load (receiver) resistance (R;y = R, +
R, = 2R,), then the effective area is only one-half of the maximum effective area
given above.

Let us now examine the significance of the effective area. From Example 2.15, the
maximum effective area of a short dipole with I < A was equal to A,,, = 0.1191%. Typ-
ical antennas that fall under this category are dipoles whose lengths are [ < A/50. For
the purpose of demonstration, let us assume that / = A/50. Because A,,, = 0.119A> =
lw, = (L/50)w,, the maximum effective electrical width of this dipole is w, = 5.95A.
Typical physical diameters (widths) of wires used for dipoles may be about w, =
A/300. Thus the maximum effective width w, is about 1,785 times larger than its
physical width.

2.16 MAXIMUM DIRECTIVITY AND MAXIMUM EFFECTIVE AREA

To derive the relationship between directivity and maximum effective area, the geo-
metrical arrangement of Figure 2.30 is chosen. Antenna 1 is used as a transmitter and
2 as a receiver. The effective areas and directivities of each are designated as A;, A,
and D,, D,. If antenna 1 were isotropic, its radiated power density at a distance R
would be

Py

T 4z R?

Wo (2-101)
where P, is the total radiated power. Because of the directive properties of the antenna,
its actual density is

P D,

W, =WoD; = —— 2-102
i oD =703 ( )

The power collected (received) by the antenna and transferred to the load would be

P, =WA FiDi A, (2-103)

= t = -
" " 47 R?

#1 . . . #2

Direction of propagation
of wave
Atm’ Dt Arm’ Dr
| ® |
Transmitter Receiver

Figure 2.30 Two antennas separated by a distance R.
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or

P, 5
DA, = 5 (4nR?) (2-103a)
t

If antenna 2 is used as a transmitter, 1 as a receiver, and the intervening medium is
linear, passive, and isotropic, we can write that

P, 5
DA, = (4nR?) (2-104)
t

Equating (2-103a) and (2-104) reduces to

D, D,
— = (2-105)
A, A,
Increasing the directivity of an antenna increases its effective area in direct propor-
tion. Thus, (2-105) can be written as

Dy _ D,
Atm Arm

(2-106)

where A,,, and A,,, (Do, and Dy,) are the maximum effective areas (directivities) of
antennas 1 and 2, respectively.
If antenna 1 is isotropic, then Dy, = 1 and its maximum effective area can be
expressed as
Arm

DOr

A = (2-107)

Equation (2-107) states that the maximum effective area of an isotropic source is

equal to the ratio of the maximum effective area to the maximum directivity of any

other source. For example, let the other antenna be a very short (I <« A) dipole whose

effective area (0.119A% from Example 2.15) and maximum directivity (1.5) are known.
The maximum effective area of the isotropic source is then equal to

A 011922 22

A = = — 2-108
! Do, 1.5 47 ( )
Using (2-108), we can write (2-107) as
)\.2
Arm = DOrAtm = DOr <4_> (2'109)
4

In general then, the maximum effective aperture (A.,) of any antenna is related to its
maximum directivity (Dy) by

Agn = — Dy (2-110)
T

Thus, when (2-110) is multiplied by the power density of the incident wave it leads to
the maximum power that can be delivered to the load. This assumes that there are no
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conduction-dielectric losses (radiation efficiency e.; is unity), the antenna is matched
to the load (reflection efficiency e, is unity), and the polarization of the impinging wave
matches that of the antenna (polarization loss factor PLF and polarization efficiency p.
are unity). If there are losses associated with an antenna, its maximum effective aper-
ture of (2-110) must be modified to account for conduction-dielectric losses (radiation

efficiency). Thus,
)\'2
Aem = €cq (_> Dy (2-111)
4

The maximum value of (2-111) assumes that the antenna is matched to the load and the
incoming wave is polarization-matched to the antenna. If reflection and polarization
losses are also included, then the maximum effective area of (2-111) is represented by

A2 .

Aem:e() E D0|Pw'9a|

2 (2-112)

N A A2

:ecd(1_|r|) 4_ D0|Pw'Pu|
T

2.17 FRIIS TRANSMISSION EQUATION AND RADAR RANGE EQUATION

The analysis and design of radar and communications systems often require the use
of the Friis Transmission Equation and the Radar Range Equation. Because of the
importance [21] of the two equations, a few pages will be devoted for their derivation.

2.17.1 Friis Transmission Equation

The Friis Transmission Equation relates the power received to the power transmitted
between two antennas separated by a distance R > 2D?/A, where D is the largest
dimension of either antenna. Referring to Figure 2.31, let us assume that the transmit-
ting antenna is initially isotropic. If the input power at the terminals of the transmitting
antenna is P,, then its isotropic power density W at distance R from the antenna is

Py

Wo = e 47 R?

(2-113)

Transmitting antenna
(P G Dy € T P 1) o
i R | Receiving antenna
(Pr’ Gr’ Dr’ Ccdrs rr’ pr)

Figure 2.31 Geometrical orientation of transmitting and receiving antennas for Friis transmis-
sion equation.
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where e, is the radiation efficiency of the transmitting antenna. For a nonisotropic
transmitting antenna, the power density of (2-113) in the direction 6;, ¢, can be writ-

ten as

PG, (0, $1) P,D,(6,, ¢1)
W, = = 2-114
! 47t R? TR ( )

where G,(6;, ¢,) is the gain and D, (6,, ¢,) is the directivity of the transmitting antenna
in the direction 6,, ¢,. Since the effective area A, of the receiving antenna is related
to its efficiency e, and directivity D, by

2
A, = e, D,(6,, ¢1) (i—n) (2-115)

the amount of power P, collected by the receiving antenna can be written, using (2-114)
and (2-115), as

22 A D0, 9Dy 6, 9P o
Pr :erDr(ers ¢r)EWI = ééy (47TR)2 |pt : pr| (2'116)
or the ratio of the received to the input power as
P, 22D (0, 1) D, (6;, §,)
L —ee 2-117
P~ @7 R)? @17

The power received based on (2-117) assumes that the transmitting and receiving
antennas are matched to their respective lines or loads (reflection efficiencies are unity)
and the polarization of the receiving antenna is polarization-matched to the impinging
wave (polarization loss factor and polarization efficiency are unity). If these two factors
are also included, then the ratio of the received to the input power of (2-117) is
represented by

2

L. 1—1“21—1"2LD9 D, (6 s - prl? 2-11
—ecdtecdr( | t| )( | r| ) t( Ty ¢I) r( T ¢r)|pt pr| ( 8)
P, 47 R

For reflection and polarization-matched antennas aligned for maximum directional
radiation and reception, (2-118) reduces to

A 2
P (m) GoGor (2-119)
t

Equations (2-117), (2-118), or (2-119) are known as the Friis Transmission Equation,
and it relates the power P, (delivered to the receiver load) to the input power of the
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Target o
Incident wave |

_4._
=

Transmitting antenna

A
(P, Gp. Dy, ecar T P7) Scattered wave

R (P

Receiving antenna
A
(P Gy Dy ecgrs T )

Figure 2.32 Geometrical arrangement of transmitter, target, and receiver for radar range
equation.

transmitting antenna P;. The term (A/4m R)? is called the free-space loss factor, and it
takes into account the losses due to the spherical spreading of the energy by the antenna.

2.17.2 Radar Range Equation

Now let us assume that the transmitted power is incident upon a target, as shown in
Figure 2.32. We now introduce a quantity known as the radar cross section or echo
area (o) of a target which is defined as the area intercepting that amount of power
which, when scattered isotropically, produces at the receiver a density which is equal
to that scattered by the actual target [13]. In equation form

) oW,;
lim |: :| =W (2-120)
R—oo | 477 R?

or
W, E°|?
o = lim |47R*— | = lim 4nR2| .'
R—>00 W; R—>00 |E’|2
(2-120a)
= lim 4;11?2|HS|2
- R—o0 |H"|2
where

= radar cross section or echo area (m?)

= observation distance from target (m)
incident power density (W/m?)

= scattered power density (W/m?)

E’ (E°) = incident (scattered) electric field (V/m)
H' (H*) = incident (scattered) magnetic field (A/m)

E=2x5aq
Il
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Any of the definitions in (2-120a) can be used to derive the radar cross section of
any antenna or target. For some polarization one of the definitions based either on the
power density, electric field, or magnetic field may simplify the derivation, although
all should give the same answers [13].

Using the definition of radar cross section, we can consider that the transmitted
power incident upon the target is initially captured and then it is reradiated isotropically,
insofar as the receiver is concerned. The amount of captured power P. is obtained by
multiplying the incident power density of (2-114) by the radar cross section o, or

PGi(6,¢) _ P $)
47 R? " 4nR?

(2-121)

The power captured by the target is reradiated isotropically, and the scattered power
density can be written as

Pe P D, (6, ¢1)

— S ik Gk dia 2-122
TR T " @n R R, (2-122)
The amount of power delivered to the receiver load is given by
P,D,(6;, ;) D, (6,, ¢, A\
P =AW, = ecgecaro G d)t) ( ¢ ) (2-123)
4 4 R] R2

where A, is the effective area of the receiving antenna as defined by (2-115).
Equation (2-123) can be written as the ratio of the received power to the input
power, or

2
P, mwmmw@% A ) (2-124)

- = €cdt€cdrO
1 4 4 R] R2

Expression (2-124) is used to relate the received power to the input power, and it takes
into account only conduction-dielectric losses (radiation efficiency) of the transmitting
and receiving antennas. It does not include reflection losses (reflection efficiency) and
polarization losses (polarization loss factor or polarization efficiency). If these two
losses are also included, then (2-124) must be expressed as

P, D, (6, $,) D, 6,, ¢,)
= eopecsr (1 — T (1 — T, o ———
P, 4

5 (2-125)
> mw * f)rl2

X S
<47TR1R2

where

P, = polarization unit vector of the scattered waves
pr = polarization unit vector of the receiving antenna
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For polarization-matched antennas aligned for maximum directional radiation and
reception, (2-125) reduces to

P, Go:Gor AT
o 2270 [ } (2-126)

P[ 4 4 R1 R2

Equation (2-124), or (2-125) or (2-126) is known as the Radar Range Equation. It
relates the power P, (delivered to the receiver load) to the input power P, transmitted
by an antenna, after it has been scattered by a target with a radar cross section (echo
area) of o.

Example 2.16

Two lossless X-band (8.2—12.4 GHz) horn antennas are separated by a distance of 100A.
The reflection coefficients at the terminals of the transmitting and receiving antennas are 0.1
and 0.2, respectively. The maximum directivities of the transmitting and receiving antennas
(over isotropic) are 16 dB and 20 dB, respectively. Assuming that the input power in the
lossless transmission line connected to the transmitting antenna is 2W, and the antennas are
aligned for maximum radiation between them and are polarization-matched, find the power
delivered to the load of the receiver.
Solution: For this problem

e.q: = e.qr = 1 because antennas are lossless.
|p¢ - Pr|> = 1 because antennas are polarization-matched
D, = Dy, ] because antennas are aligned for
D, = Dy,| maximum radiation between them
Dy; = 16 dB = 39.81 (dimensionless)
Dy, = 20 dB = 100 (dimensionless)

Using (2-118), we can write

P. =[1 — (0.1)2][1 — (0.2)%][x /47 (1001)]*(39.81)(100)(2)
= 4777 mW

2.17.3 Antenna Radar Cross Section

The radar cross section, usually referred to as RCS, is a far-field parameter, which is
used to characterize the scattering properties of a radar target. For a target, there is
monostatic or backscattering RCS when the transmitter and receiver of Figure 2.32
are at the same location, and a bistatic RCS when the transmitter and receiver are
not at the same location. In designing low-observable or low-profile (stealth) targets,
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TABLE 2.2 RCS of Some Typical Targets

Typical RCSs [22]

Object RCS (m*>)  RCS (dBsm)
Pickup truck 200 23
Automobile 100 20
Jumbo jet airliner 100 20
Large bomber or 40 16
commercial jet
Cabin cruiser boat 10 10
Large fighter aircraft 6 7.78
Small fighter aircraft or 2 3
four-passenger jet
Adult male 1 0
Conventional winged 0.5 -3
missile
Bird 0.01 -20
Insect 0.00001 -50
Advanced tactical fighter 0.000001 —60

it is the parameter that you attempt to minimize. For complex targets (such as air-
craft, spacecraft, missiles, ships, tanks, automobiles) it is a complex parameter to
derive. In general, the RCS of a target is a function of the polarization of the incident
wave, the angle of incidence, the angle of observation, the geometry of the target, the
electrical properties of the target, and the frequency of operation. The units of RCS
of three-dimensional targets are meters squared (m?) or for normalized values deci-
bels per squared meter (dBsm) or RCS per squared wavelength in decibels (RCS /A>
in dB). Representative values of some typical targets are shown in Table 2.2 [22].
Although the frequency was not stated [22], these numbers could be representative at
X-band.

The RCS of a target can be controlled using primarily two basic methods: shaping
and the use of materials. Shaping is used to attempt to direct the scattered energy
toward directions other than the desired. However, for many targets shaping has to be
compromised in order to meet other requirements, such as aerodynamic specifications
for flying targets. Materials is used to trap the incident energy within the target and
to dissipate part of the energy as heat or to direct it toward directions other than the
desired. Usually both methods, shaping and materials, are used together in order to
optimize the performance of a radar target. One of the “golden rules” to observe in
order to achieve low RCS is to “round corners, avoid flat and concave surfaces, and
use material treatment in flare spots.”

There are many methods of analysis to predict the RCS of a target [13], [22]—[33].
Some of them are full-wave methods, others are designated as asymptotic methods,
either low-frequency or high-frequency, and some are considered as numerical meth-
ods. The methods of analysis are often contingent upon the shape, size, and material
composition of the target. Some targets, because of their geometrical complexity, are
often simplified and are decomposed into a number of basic shapes (such as strips,
plates, cylinders, cones, wedges) which when put together represent a very good replica
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of the actual target. This has been used extensively and proved to be a very good
approach. The topic is very extensive to be treated here in any detail, and the reader is
referred to the literature [13], [22]—[33]. There is a plethora of references but because
of space limitations, only a limited number is included here to get the reader started
on the subject.

Antennas individually are radar targets which many exhibit large radar cross section.
In many applications, antennas are mounted on the surface of other complex tar-
gets (such as aircraft, spacecraft, satellites, missiles, automobiles), and become part
of the overall radar target. In such configurations, many antennas, especially aper-
ture types (such as waveguides, horns) become large contributors to the total RCS,
monostatic or bistatic, of the target. Therefore in designing low-observable targets,
the antenna type, location and contributions become an important consideration of the
overall design.

The scattering and transmitting (radiation) characteristics of an antenna are related
[34]-[36]. There are various methods which can be used to analyze the fields scattered
by an antenna. The presentation here parallels that in [23], [37]-[40]. In general the
electric field scattered by an antenna with a load impedance Z; can be expressed by

I, 7
E'(Z,) =E(0) — —

_ oL g (2-127)
L Zp +Zy

where

E*(Z,) = electric field scattered by antenna with a load Z,,
E*(0) = electric field scattered by short-circuited antenna (Z; = 0)
I; = short-circuited current induced by the incident field on the antenna with
Z;, =0
I, = antenna current in transmitting mode
Z4 = R4+ jX4 = antenna input impedance
E’ = electric field radiated by the antenna in transmitting mode

By defining an antenna reflection coefficient of

r, = ZL—%a (2-128)
AT Zi+ Zs
the scattered field of (2-127) can be written as
I 1 .
E'(Z,) =E(0) — —-(1 +THE (2-129)

1,2

Therefore according to (2-129) the scattered field by an antenna with a load Z; is
equal to the scattered field when the antenna is short-circuited (Z; = 0) minus a term
related to the reflection coefficient and the field transmitted by the antenna.

Green has expressed the field scattered by an antenna terminated with a load Z; in
a more convenient form which allows it to be separated into the structural and antenna
mode scattering terms [23], [37]—[40]. This is accomplished by assuming that the antenna
is loaded with a conjugate-matched impedance (Z; = Z%). Doing this generates using
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(2-127) another equation for the field scattered by the antenna withaload Z; = Z%. When
this new equation is subtracted from (2-127) it eliminates the short-circuited scattered
field, and we can write that the field scattered by the antenna with a load Z; is

LT Zs

E'(Z.) =EY(Z}) — 1 2R (2-130)
t A
Z; — 7%
=Tz (2-130)
L A

where

E*(Z,) = electric field scattered by the antenna with load Z,
E’(Z%) = electric field scattered by the antenna with a conjugate-matched load
1(Z%) = current induced by the incident wave at the terminals matched with a
conjugate impedance load
' = conjugate-matched reflection coefficient
Z; = load impedance attached to antenna terminals

For the short-circuited case and the conjugate-matched transmitting (radiating) case,
the product of their currents and antenna impedance are related by [34]

I, Zy =1,(Zy+ Z}) = 2Rl (2-131)

where 1)} is the scattering current when the antenna is conjugate-matched (Z; = Z3).
Substituting (2-131) into (2-130) for /; reduces (2-130) to

I*
E'(Z,) =E'(Z}) - T°E (2-132)
t

It can also be shown that if the antenna is matched with a load Z, (instead of Z7),
then (2-132) can be written as

I,
E'(Z,) = B (Z4) — I—FAE’ (2-133)
t

Therefore the field scattered by an antenna loaded with an impedance Z; is related
to the field radiated by the antenna in the transmitting mode in three different ways,
as shown by (2-129), (2-132), and (2-133). According to (2-129) the field scattered by
an antenna when it is loaded with an impedance Z; is equal to the field scattered by
the antenna when it is short-circuited (Z; = 0) minus a term related to the antenna
reflection coefficient and the field transmitted by the antenna. In addition, according
to (2-132), the field scattered by an antenna when it is terminated with an impedance
Z; is equal to the field scattered by the antenna when it is conjugate-matched with
an impedance Z’ minus the field transmitted (radiated) times the conjugate reflection
coefficient. The second term is weighted by the two currents. Alternatively, according
to (2-133), the field scattered by the antenna when it is terminated with an impedance
Z is equal to the field scattered by the antenna when it is matched with an impedance
Z 4 minus the field transmitted (radiated) times the reflection coefficient weighted by
the two currents.
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In (2-132) the first term consists of the structural scattering term and the second of
the antenna mode scattering term. The structural scattering term is introduced by the
currents induced on the surface of the antenna by the incident field when the antenna
is conjugate-matched, and it is independent of the load impedance. The antenna mode
scattering term is only a function of the radiation characteristics of the antenna, and
its scattering pattern is the square of the antenna radiation pattern. The antenna mode
depends on the power absorbed in the load of a lossless antenna and the power which
is radiated by the antenna due to a load mismatch. This term vanishes when the antenna
is conjugate-matched.

From the scattered field expression of (2-129), it can be shown that the total radar
cross section of the antenna terminated with a load Z; can be written as [40]

o = Vo' — (1 + Vo |? (2-134)

where

o = total RCS with antenna terminated with Z
o’ = RCS due to structural term
0% = RCS due to antenna mode term
¢, = relative phase between the structural and antenna mode terms

If the antenna is short-circuited (I'y = —1), then according to (2-134)
Oshort = O° (2-135)
If the antenna is open-circuited (I'y = +1), then according to (2-134)
Oopen = V0" =270/ * = Oresiaua (2-136)
Lastly, if the antenna is matched Z; = Z,(I"'4 = 0), then according to (2-134)
Omateh = [Vo! — Vol ? (2-137)

Therefore under matched conditions, according to (2-137), the range of values (mini-
mum to maximum) of the radar cross section is

o — 0% <o <o’ + 0% (2-138)

The minimum value occurring when the two RCSs are in phase while the maximum
occurs when they are out of phase.

Example 2.17

The structural RCS of a resonant wire dipole is in phase and in magnitude slightly greater
than four times that of the antenna mode. Relate the short-circuited, open-circuited, and
matched RCSs to that of the antenna mode.




FRIIS TRANSMISSION EQUATION AND RADAR RANGE EQUATION 103

Solution: Using (2-135)

Oshort = 40antenna

Using (2-136)
Oopen = 20antenna(0) = 0 or very small

The matched value is obtained using (2-137), or

Omatch = Oantenna

To produce a zero RCS, (2-134) must vanish. This is accomplished if

Re(I'y) = —1 4 cos¢,/0%/0“ (2-139a)
Im(Ty) = —sing,/o°/c? (2-139b)

Assuming positive values of resistances, the real value of I"4 cannot be greater than
unity. Therefore there are some cases where the RCS cannot be reduced to zero by
choosing Z;. Because Z4 can be complex, there is no limit on the imaginary part of
4.

In general, the structural and antenna mode scattering terms are very difficult to
predict and usually require that the antenna is solved as a boundary-value prob-
lem. However, these two terms have been obtained experimentally utilizing the Smith
chart [37]-[39].

For a monostatic system the receiving and transmitting antennas are collocated. In
addition, if the antennas are identical (Go, = Go; = G) and are polarization-matched
(P, = P, = 1), the total radar cross section of the antenna for backscattering can be

written as R

A
o=-"G}A-T*? (2-140)
4

where A is a complex parameter independent of the load.
If the antenna is a thin dipole, then A >~ 1 and (2-140) reduces to

A2 A2 Z, —Z*%
o~ LG —T P =261 - 2L A
47 4 Zi+ Zy
A2 2R, |?
= 0G| A (2-141)
4 Z]_ +ZA

If in addition we assume that the dipole length is [ = X¢/2 and is short-circuited
(Z; = 0), then the normalized radar cross section of (2-141) is equal to

Gj  (1.643)
9~ G0 LB 8503 ~ 0.86 (2-142)
Ay 4 b4



104 FUNDAMENTAL PARAMETERS OF ANTENNAS

-10
Matched-load Half-wavelength dipole
u ——— Short-circuited 3.7465 cm long x 0.2362 cm diameter
BT Open-circuited Frequency = 4.02 GHz
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Incidence angle (degrees)

E-plane

Figure 2.33 E-plane monostatic RCS (oypg) versus incidence angle for a half-wavelength
dipole.

which agrees with experimental corresponding maximum monostatic value of
Figure 2.33 and those reported in the literature [41], [42].

Shown in Figure 2.33 is the measured E-plane monostatic RCS of a half-wavelength
dipole when it is matched to a load, short-circuited (straight wire) and open-circuited
(gap at the feed). The aspect angle is measured from the normal to the wire. As
expected, the RCS is a function of the observation (aspect) angle. Also it is apparent
that there are appreciable differences between the three responses. For the short-
circuited case, the maximum value is approximately —24 dBsm which closely agrees
with the computed value of —22.5 dBsm using (2-142). Similar responses for the mono-
static RCS of a pyramidal horn are shown in Figure 2.34(a) for the E-plane and in
Figure 2.34(b) for the H-plane. The antenna is a commercial X-band (8.2-12.4 GHz)
20-dB standard gain horn with aperture dimension of 9.2 cm by 12.4 cm. The length of
the horn is 25.6 cm. As for the dipole, there are differences between the three responses
for each plane. It is seen that the short-circuited response exhibits the largest return.

Antenna RCS from model measurements [43] and microstrip patches [44], [45] have
been reported.

2.18 ANTENNA TEMPERATURE

Every object with a physical temperature above absolute zero (0 K = —273°C) radiates
energy [6]. The amount of energy radiated is usually represented by an equivalent
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E- and H-plane monostatic RCS versus incidence angle for a pyramidal horn
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temperature T, better known as brightness temperature, and it is defined as
Tp0,¢) = €®. 9)T,, = (1 — [THT, (2-143)

where

Ty = brightness temperature (equivalent temperature; K)
€ = emissivity (dimensionless)
T,, = molecular (physical) temperature (K)
I'(0, ¢) = reflection coefficient of the surface for the polarization of the wave

Since the values of emissivity are 0 < € < 1, the maximum value the brightness tem-
perature can achieve is equal to the molecular temperature. Usually the emissivity is a
function of the frequency of operation, polarization of the emitted energy, and molec-
ular structure of the object. Some of the better natural emitters of energy at microwave
frequencies are (a) the ground with equivalent temperature of about 300 K and (b) the
sky with equivalent temperature of about 5 K when looking toward zenith and about
100-150 K toward the horizon.

The brightness temperature emitted by the different sources is intercepted by anten-
nas, and it appears at their terminals as an antenna temperature. The temperature
appearing at the terminals of an antenna is that given by (2-143), after it is weighted
by the gain pattern of the antenna. In equation form, this can be written as

2 b4
/ /T3(9,¢)G(9,¢>)sin9d9d¢
Ty = =0 (2-144)

2 kg
/ / G(0, $)sin0do do
0 0

where

T, = antenna temperature (effective noise temperature of the antenna
radiation resistance; K)
G (0, ¢) = gain (power) pattern of the antenna

Assuming no losses or other contributions between the antenna and the receiver, the
noise power transferred to the receiver is given by

P, = kTAAf (2-145)

where

P, = antenna noise power (W)

k = Boltzmann’s constant (1.38 x 10~2% J/K)
T, = antenna temperature (K)
Af = bandwidth (Hz)

If the antenna and transmission line are maintained at certain physical temperatures,
and the transmission line between the antenna and receiver is lossy, the antenna tem-
perature T4 as seen by the receiver through (2-145) must be modified to include the
other contributions and the line losses. If the antenna itself is maintained at a certain
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Figure 2.35 Antenna, transmission line, and receiver arrangement for system noise power
calculation.

physical temperature T, and a transmission line of length /, constant physical temper-
ature 7; throughout its length, and uniform attenuation of o (Np/unit length) is used
to connect an antenna to a receiver, as shown in Figure 2.35, the effective antenna
temperature at the receiver terminals is given by

T, = Tae 2 4+ Type 2 + Ty(1 — e (2-146)

where .
TAP = <— — 1) Tp (2-1463)

e

T, = antenna temperature at the receiver terminals (K)
T, = antenna noise temperature at the antenna terminals (2-144) (K)
= antenna temperature at the antenna terminals due to physical temperature
(2-146a) (K)
T, = antenna physical temperature (K)
o = attenuation coefficient of transmission line (Np/m)
e, = thermal efficiency of antenna (dimensionless)
| = length of transmission line (m)
Ty = physical temperature of the transmission line (K)

The antenna noise power of (2-145) must also be modified and written as
P, =kT,Af (2-147)

where T, is the antenna temperature at the receiver input as given by (2-146).
If the receiver itself has a certain noise temperature 7, (due to thermal noise in the
receiver components), the system noise power at the receiver terminals is given by

Py = k(T, + T)Af = kT,Af (2-148)
where
P; = system noise power (at receiver terminals)
T, = antenna noise temperature (at receiver terminals)
T, = receiver noise temperature (at receiver terminals)
T, = T, + T, = effective system noise temperature (at receiver terminals)
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A graphical relation of all the parameters is shown in Figure 2.35. The effective
system noise temperature 7y of radio astronomy antennas and receivers varies from
very few degrees (typically ~ 10 K) to thousands of Kelvins depending upon the type
of antenna, receiver, and frequency of operation. Antenna temperature changes at the
antenna terminals, due to variations in the target emissions, may be as small as a
fraction of one degree. To detect such changes, the receiver must be very sensitive and
be able to differentiate changes of a fraction of a degree.

Example 2.18

The effective antenna temperature of a target at the input terminals of the antenna is 150 K.
Assuming that the antenna is maintained at a thermal temperature of 300 K and has a thermal
efficiency of 99% and it is connected to a receiver through an X-band (8.2-12.4 GHz)
rectangular waveguide of 10 m (loss of waveguide = 0.13 dB/m) and at a temperature of
300 K, find the effective antenna temperature at the receiver terminals.

Solution: We first convert the attenuation coefficient from dB to Np by
a(dB/m) = 20(log;, €)ar(Np/m) = 20(0.434)cr(Np/m) = 8.68c(Np/m). Thus o (Np/m) =
o (dB/m)/8.68 = 0.13/8.68 = 0.0149. The effective antenna temperature at the receiver
terminals can be written, using (2-146a) and (2-146), as

0.99
Ta — 1506—04149(2) + 3.036_0'149(2) + 300[1 _ e—0.149(2)]
= 111.345+42.249 + 77.31 = 190.904 K

1
T4p = 300 (— = 1) =3.03

The results of the above example illustrate that the antenna temperature at the input
terminals of the antenna and at the terminals of the receiver can differ by quite a
few degrees. For a smaller transmission line or a transmission line with much smaller
losses, the difference can be reduced appreciably and can be as small as a fraction of
a degree.

A summary of the pertinent parameters and associated formulas and equation num-
bers for this chapter are listed in Table 2.3.

219 MULTIMEDIA

In the CD that is part of the book, the following multimedia resources are included for
the review, understanding, and visualization of the material of this chapter:

a. Java-based interactive questionnaire, with answers.

b. Java-based applet for computing and displaying graphically the directivity of
an antenna.

c. Matlab and Fortran computer program, designated Directivity, for computing
the directivity of an antenna. A description of this program is in the READ ME
file of the attached CD.
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d. Matlab plotting computer programs:

¢ 2-D Polar (designated as Polar). This program can be used to plot the two-
dimensional patterns, in both polar and semipolar form (in linear or dB scale),
of an antenna.

¢ 3-D Spherical. This program (designated as Spherical) can be used to plot
the three-dimensional pattern (in linear or dB scale) of an antenna in spheri-
cal form.

A description of these programs is in the corresponding READ ME files of the

attached CD.

e. Power Point (PPT) viewgraphs, in multicolor.

TABLE 2.3 Summary of Important Parameters and Associated Formulas and Equation
Numbers

Equation
Parameter Formula Number
Infinitesimal area dA =r*sinfdé deo 2-1
of sphere
Elemental solid dQ2 =sin6dbd¢ 2-2)
angle of sphere
1
Average power W, = ERe[E x H*] (2-8)
density
1
Radiated Pos = Py = ﬂwav -ds = > ﬂRe[E x H*] - ds (2-9)
power/average ] 4
radiated power
.. . Prad
Radiation density Wo = (2-11)
: : 4mr?
of isotropic
radiator
P2
Radiation intensity U=r*W, = ByF(6,¢) ~ — (2-12),
(far field) 2Zn
x [|Eo(r. 0. )P + | Ey(r, 0. )] (2-122)
U 4nU 4 -
Directivity S Q_rr (2-16),
D(Q, ¢) Uo Praa A (2_23)
2 b4
Beam solid angle 04 = /0 /0 F,(0,¢)sin0dodp (2-24)
Q4
F@, ¢) -
Fu. )= — " (2-25)
[F (6, ¢)max

(continued overleaf)
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TABLE 2.3 (continued)

Equation
Parameter Formula Number
U, 4 U,
Maximum D = Dy = -2 — 7; max (2-16a)
directivity Dy Uo rad
Dy = Dy + Dy
2-17)
Partial directivities ) = anly _ 4nUs
Dy, D¢ Praa (Prad)e + (Prad)¢ (2-173.)
4n U, 47 U,
Dy = 27 _ Te (2-17b)
Prad (Prad)e + (Pmd)d)
Approximate Do ~ 4w 41253 (2-26),
maximum 01,02 01Oy 2-27)
directivity (one (Kraus)
main lobe pattern) (2-30),
32In2 22.181 72,815
) ~ = frd _
@)%r + ®%r @)%r + @)%r @)%d + (9%(1 (2 308),
(Tai-Pereira) (2-30b)
Approximate 101
maximum Dy >~ 3
directivity HPBW (degrees) — 0.0027[HPBW (degrees)]
(omnidirectional (McDonald) (2-33a)
pattern) !
Dy~ —1724+191 /0.818 + ———— (2-33b)
0 * \/ + HPBW (degrees)
(Pozar)
47U (6, 47U (6, -
] G = J = e [M] =e(,-dD(9,¢) (2 46),
Gain G(0, ¢) Py, Prad (2-47),
Prag = €ca Pin (2-49)
. R,
Antenna radiation Ced = TR (2-90)
efficiency e.q r+ Ry
l
Loss resistance R;, Ry, =Ry = — “ho (2-90b)
. P\ 20
(straight
wire/uniform
current)
l
Loss resistance R;, L= — “Ho
2PV 20

(straight wirelA /2
dipole)
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TABLE 2.3 (continued)

Equation
Parameter Formula Number
Maximum gain G Go = ecqgDmax = €caDo (2-49a)
Partial gains Go=Gyg+ Gy (2-50)
Go. Gy 4n Uy 4nU, (2-50a),
G@ = N G¢ = —
P, in P,- (2-50b)

Gaps = ¢,G 0, ¢) = e;ecaD(0, $) = (1 — [TPea DO, $) | (2-492)
Absolute gain
G abs =eoD (Y, ¢) (2-49b)

Total antenna eo = ereceq = ereg = (1 — [THewa (2-52)
efficiency e

Reflection e, =(1—|TP) (2-45)
efficiency e,
2 6,
Beam efficiency / / U, ¢)sin6dbde
BE BE =00 (2-54)

2 T
/ / U@, ¢)sin6dbde
0 0

Polarization loss PLF = |py - pal? (2-71)
factor (PLF)

Vector effective L.0,¢) =89ly(0, ) + ayl, (0, ¢) (2-91)
length €.(6, ¢)
. . Me . Eim:|2
Polarization Pe = TREN e (2-71a)
efficiency p. [€c[[Eme]
Antenna Za=Ra+jXa= (R + R+ jXa -72),
impedance Z 4 (2-73)
Ve[ 1 2\ )
Maximum Aem = 8W. | R + R, =\ 17 Dolpw - Pal (2-96),
effective area A,,, 5 (2-111),
A
== ) Golpw - pul? )
<4n) olPw - Pal (2-112)
Aperture bap = Acm _ maximum effective area (2-100)

efficiency &, Ap physical area

(continued overleaf’)
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TABLE 2.3 (continued)

Equation
Parameter Formula Number
Friis transmission P A 2G Gorlds - b, (2-118),
equation P, \agr) ZoTolPebr 2-119)
Radar range P o GoGor A ? By B2 (2-125),
equation P, % ax |amRR,| PP (2-126)
= lim |4 RZWS = lim |4 R2|Es|2
Radar cross TR W | T RN B2
section (RCS) 5 (2-120a)
H.Y
e Pl
R—o0 |H‘|2
Brightness Tp(0,¢) =&, )T, = (1 — [T)T, (2-144)
temperature
Tp(0, $)
27 T
Antenna / / Tg(@, )G, p)sinb db do
temperature T4 Ty =20 2‘3{ — (2-145)
/ / G0, ¢p)sin0do d¢
(0G4 0

REFERENCES

1.

2.

A. Z. Elsherbeni and C. D. Taylor Jr., “Antenna Pattern Plotter,” Copyright © 1995, Elec-
trical Engineering Department, The University of Mississippi, University, MS.

W. R. Scott Jr., “A General Program for Plotting Three-dimensional Antenna Patterns,”
IEEE Antennas and Propagation Society Newsletter, pp. 6—11, December 1989.

. A. Z. Elsherbeni and C. D. Taylor Jr., “Interactive Antenna Pattern Visualization,” Software

Book in Electromagnetics, Vol. 11, Chapter 8§, CAEME Center for Multimedia Education,
University of Utah, pp. 367-410, 1995.

. J. S. Hollis, T. J. Lyon, and L. Clayton Jr. (eds.), Microwave Antenna Measurements,

Scientific-Atlanta, Inc., July 1970.

. J. D. Kraus, Antennas, McGraw-Hill, New York, 1988.

6. J. D. Kraus, Radio Astronomy, McGraw-Hill Book Co., 1966.

10.

. A. Z. Elsherbeni and P. H. Ginn. “Interactive Analysis of Antenna Arrays,” Software Book

in Electromagnetics, Vol. 11, Chapter 6, CAEME Center for Multimedia Education, Univer-
sity of Utah, pp. 337-366, 1995.

. J. Romeu and R. Pujol, “Array,” Software Book in Electromagnetics, Vol. 1I, Chapter 12,

CAEME Center for Multimedia Education, University of Utah, pp. 467-481, 1995.

. R. S. Elliott, “Beamwidth and Directivity of Large Scanning Arrays,” Last of Two Parts,

The Microwave Journal, pp. 74-82, January 1964.

C.-T. Tai and C. S. Pereira, “An Approximate Formula for Calculating the Directivity of an
Antenna,” IEEE Trans. Antennas Propagat., Vol. AP-24, No. 2, pp. 235-236, March 1976.



11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.
31.
32.
33.
34.

35.

36.

REFERENCES 113

N. A. McDonald, “Approximate Relationship Between Directivity and Beamwidth for
Broadside Collinear Arrays,” IEEE Trans. Antennas Propagat., Vol. AP-26, No. 2,
pp. 340-341, March 1978.

D. M. Pozar, “Directivity of Omnidirectional Antennas,” IEEE Antennas Propagat. Mag.,
Vol. 35, No. 5, pp. 50-51, October 1993.

C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley and Sons, New York,
1989.

H. Poincaré, Theorie Mathematique de la Limiere, Georges Carre, Paris, France, 1892.

G. A. Deschamps, “Part II—Geometrical Representation of the Polarization of a Plane
Electromagnetic Wave,” Proc. IRE, Vol. 39, pp. 540-544, May 1951.

E. F. Bolinder, “Geometrical Analysis of Partially Polarized Electromagnetic Waves,” IEEE
Trans. Antennas Propagat., Vol. AP-15, No. 1, pp. 37-40, January 1967.

G. A. Deschamps and P. E. Mast, “Poincaré Sphere Representation of Partially Polarized
Fields,” IEEE Trans. Antennas Propagat., Vol. AP-21, No. 4, pp. 474-478, July 1973.

G. Sinclair, “The Transmission and Reflection of Elliptically Polarized Waves,” Proc. IRE,
Vol. 38, pp. 148-151, February 1950.

C. A. Balanis, “Antenna Theory: A Review,” Proc. IEEE, Vol. 80, No. 1, pp. 7-23, January
1992.

R. E. Collin, Antennas and Radiowave Propagation, McGraw-Hill Book Co., New York,
1985.

M. L. Skolnik, Radar Systems, Chapter 2, McGraw-Hill Book Co., New York, 1962.

J. A. Adam, “How to Design an “Invisible’ Aircraft,” IEEE Spectrum, pp. 26—31, April
1988.

G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Hand-
book, Vols. 1, 2, Plenum Press, New York, 1970.

M. 1. Skolnik (Ed.), Radar Handbook, Chapter 27, Section 6, McGraw-Hill Book Co., New
York, pp. 27-19-27-40, 1970.

J. W. Crispin, Jr. and K. M. Siegel, Methods of Radar Cross Section Analysis, Academic
Press, Inc., New York, 1968.

J. J. Bowman, T. B. A. Senior, and P. L. Uslenghi (Eds.), Electromagnetic and Acoustic
Scattering by Simple Shapes, Amsterdam, The Netherland: North-Holland, 1969.

E. F. Knott, M. T. Turley, and J. F. Shaeffer, Radar Cross Section, Artech House, Inc.,
Norwood, MA, 1985.

A. K. Bhattacharya and D. L. Sengupta, Radar Cross Section Analysis and Control, Artech
House, Inc., Norwood, MA, 1991.

A. F. Maffett, Topics for a Statistical Description of Radar Cross Section, John Wiley and
Sons, New York, 1989.

Special issue, Proc. IEEE, Vol. 53, No. 8, August 1965.

Special issue, Proc. IEEE, Vol. 77, No. 5, May 1989.

Special issue, IEEE Trans. Antennas Propagat., Vol. 37, No. 5, May 1989.

W. R. Stone (ed.), Radar Cross Sections of Complex Objects, IEEE Press, New York, 1989.
A. F. Stevenson, “Relations Between the Transmitting and Receiving Properties of Anten-
nas,” Q. Appl. Math., pp. 369—-384, January 1948.

R. F. Harrington, “Theory of Loaded Scatterers,” Proc. IEE (British), Vol. 111, pp. 617-
623, April 1964.

R. E. Collin, “The Receiving Antenna,” in Antenna Theory, Part I, (R. E. Collin and F. J.
Zucker, Eds.), McGraw-Hill Book Co., 1969.



114 FUNDAMENTAL PARAMETERS OF ANTENNAS

37. R. B. Green, “The Effect of Antenna Installations on the Echo Area of an Object,” Report
No. 1109-3, ElectroScience Laboratory, Ohio State University, Columbus, OH, September
1961.

38. R. B. Green “Scattering from Conjugate-Matched Antennas,” IEEE Trans. Antennas Prop-
agat., Vol. AP-14, No. 1, pp. 17-21, January 1966.

39. R. J. Garbacz, “The Determination of Antenna Parameters by Scattering Cross-Section Mea-
surements, III. Antenna Scattering Cross Section,” Report No. 1223-10, Antenna Laboratory,
Ohio State University, November 1962.

40. R. C. Hansen, “Relationships Between Antennas as Scatterers and as Radiators,” Proc.
IEEE, Vol. 77, No. 5, pp. 659-662, May 1989.

41. S. H. Dike and D. D. King, “Absorption Gain and Backscattering Cross Section of the
Cylindrical Antenna,” Proc. IRE, Vol. 40, 1952.

42. J. Sevick, “Experimental and Theoretical Results on the Backscattering Cross Section of
Coupled Antennas,” Tech. Report No. 150, Cruft Laboratory, Harvard University, May
1952.

43. D. L. Moffatt, “Determination of Antenna Scattering Properties From Model Measure-
ments,” Report No. 1223-12, Antenna Laboratory, Ohio State University, January
1964.

44. J. T. Aberle, Analysis of Probe-Fed Circular Microstrip Antennas, PhD Dissertation, Uni-
versity of Mass., Amherst, MA, 1989.

45. J. T. Aberle, D. M. Pozar, and C. R. Birtcher, “Evaluation of Input Impedance and Radar
Cross Section of Probe-Fed Microstrip Patch Elements Using an Accurate Feed Model,”
IEEE Trans. Antennas Propagat., Vol. 39, No. 12, pp. 1691-1696, December 1991.

PROBLEMS

2.1. An antenna has a beam solid angle that is equivalent to a trapezoidal patch

(patch with 4 sides, 2 of which are parallel to each other) on the surface of

a sphere of radius r. The angular space of the patch on the surface of the

sphere extends between /6 < 6 < 7/3(30° < 0 < 60°) in latitude and 7/4 <

¢ < m/3(45° < ¢ < 60°) in longitude. Find the following:

(a) Equivalent beam solid angle [which is equal to number of square radi-
ans/steradians or (degrees)?] of the patch [in square radians/steradians
and in (degrees)?].

o Exact.
o Approximate using Q4 = A® - AD = (6, —6y) - (¢ — ¢1). Compare
with the exact.

(b) Corresponding antenna maximum directivities of part a (dimensionless and
in dB).

2.2. Derive (2-7) given the definitions of (2-5) and (2-6)

2.3. A hypothetical isotropic antenna is radiating in free-space. At a distance
of 100 m from the antenna, the total electric field (Ey) is measured to be
5 V/m. Find the

(a) power density (W;,q)
(b) power radiated (Pr,q)



24.

2.5.

2.6.

2.7.

2.8.
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Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in
radians and degrees, for the following normalized radiation intensities:

(a) U(B) = cosb (b) U(9) = cos*8
(©) UB) =cos(20) (d) U(B) = cos?(20) ¢ (0 <0 <90°,0 < ¢ < 360°)
(e) UO) = cos(39) (f) UB) = cos?(30)

Find the half-power beamwidth (HPBW) and first-null beamwidth (FNBW), in
radians and degrees, for the following normalized radiation intensities:

(@) U(#) = cos b cos(20)

(b) U(8) = cos? 6 cos2(26)
(c) U(@B) = cos(#) cos(360)
(d) U(®) = cos?(0) cos>(36)
(e) U(#) = cos(28) cos(30)
() U(0) = cos*(26) cos*(36)

(0 <6 <90°0 < ¢ < 360°)

The maximum radiation intensity of a 90% efficiency antenna is 200 mW/unit
solid angle. Find the directivity and gain (dimensionless and in dB) when the

(a) input power is 125.66 mW
(b) radiated power is 125.66 mW

The power radiated by a lossless antenna is 10 watts. The directional charac-
teristics of the antenna are represented by the radiation intensity of

(a) U = B, cos>0 (watts/unit solid angle)
(b) U = B,,cos39} 0=60=<n/2,0<¢ <2n)
For each, find the
(a) maximum power density (in watts/square meter) at a distance of 1,000 m
(assume far-field distance). Specify the angle where this occurs.

(b) exact and approximate beam solid angle 4.
(c) directivity, exact and approximate, of the antenna (dimensionless and in dB).
(d) gain, exact and approximate, of the antenna (dimensionless and in dB).

You are an antenna engineer and you are asked to design a high directivity/gain
antenna for a space-borne communication system operating at 10 GHz. The
specifications of the antenna are such that its pattern consists basically of one
major lobe and, for simplicity, no minor lobes (if there are any minor lobes they
are of such very low intensity and you can assume they are negligible/zero).
Also it is desired that the pattern is symmetrical in the azimuthal plane. In
order to meet the desired objectives, the main lobe of the pattern should have
a half-power beamwidth of 10 degrees. In order to expedite the design, it is
assumed that the major lobe of the normalized radiation intensity of the antenna
is approximated by
U9, ¢) = cos" ()

and it exists only in the upper hemisphere (0 <60 <1w/2,0 < ¢ < 2m). Deter-

mine the:

(a) Value of n (not necessarily an integer) to meet the specifications of the
major lobe. Keep 5 significant figures in your calculations.

(b) Exact maximum directivity of the antenna (dimensionless and in dB).
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2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

FUNDAMENTAL PARAMETERS OF ANTENNAS

(c) Approximate maximum directivity of the antenna based on Kraus’ formula
(dimensionless and in dB).

(d) Approximate maximum directivity of the antenna based on Tai & Pereira’s
formula (dimensionless and in dB).

In target-search ground-mapping radars it is desirable to have echo power
received from a target, of constant cross section, to be independent of its range.
For one such application, the desirable radiation intensity of the antenna is
given by

1 0° <8 <20°
U®,¢) = 1 0342csc(@) 20° <6 <60° $0° <o < 360°
0 60° < 0 < 180°

Find the directivity (in dB) using the exact formula.

A beam antenna has half-power beamwidths of 30° and 35° in perpendicular
planes intersecting at the maximum of the mainbeam. Find its approximate
maximum effective aperture (in A%) using (a) Kraus’ and (b) Tai and Pereira’s
formulas. The minor lobes are very small and can be neglected.

The normalized radiation intensity of a given antenna is given by

(a) U=sinfsing (b) U =sinfsin’*¢

(¢) U=sinfsin¢ (d) U =sin’Osing

() U =sin*0sin’¢p (f) U =sin*Osin’ ¢

The intensity exists only in the 0 <6 <m,0 < ¢ < 7 region, and it is zero
elsewhere. Find the

(a) exact directivity (dimensionless and in dB).

(b) azimuthal and elevation plane half-power beamwidths (in degrees).

Find the directivity (dimensionless and in dB) for the antenna of Problem
2.11 using

(a) Kraus’ approximate formula (2-26)
(b) Tai and Pereira’s approximate formula (2-30a)

For Problem 2.5, determine the approximate directivity (in dB) using
(a) Kraus’ formula
(b) Tai and Pereira’s formula.

The normalized radiation intensity of an antenna is rotationally symmetric in
¢, and it is represented by

1 0° <6 <30°
0.5 30°<6 <60°
0.1 60°<6 <90°
0 90°<60 <180°

U =

(a) What is the directivity (above isotropic) of the antenna (in dB)?
(b) What is the directivity (above an infinitesimal dipole) of the antenna (in dB)?
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2.16.

2.17.

2.18.

2.19.

2.20.
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The radiation intensity of an antenna is given by
U8, ¢) = cos* O sin’ ¢

for 0 <6 <m/2 and 0 < ¢ <27 (i.e., in the upper half-space). It is zero in
the lower half-space.
Find the

(a) exact directivity (dimensionless and in dB)
(b) elevation plane half-power beamwidth (in degrees)

The normalized radiation intensity of an antenna is symmetric, and it can be
approximated by

1 0° <6 < 30°
0

ey =12 300 5 g0
0.866

0 90° <6 < 180°

and it is independent of ¢. Find the

(a) exact directivity by integrating the function

(b) approximate directivity using Kraus’ formula

The maximum gain of a horn antenna is +20 dB, while the gain of its first

sidelobe is —15 dB. What is the difference in gain between the maximum and
first sidelobe:

(a) in dB
(b) as a ratio of the field intensities.

The normalized radiation intensity of an antenna is approximated by
U =sin6

where 0 < 6 <, and 0 < ¢ < 2m. Determine the directivity using the

(a) exact formula

(b) formulas of (2-33a) by McDonald and (2-33b) by Pozar

(c) computer program Directivity of this chapter.

Repeat Problem 2.18 for a A/2 dipole whose normalized intensity is approxi-

mated by X
U ~sin’ 0

Compare the value with that of (4-91) or 1.643 (2.156 dB).

The radiation intensity of a circular loop of radius a and of constant current is
given by

U=J}kasinf), 0<6<m and 0<¢ <27

where J;(x) is the Bessel function of order 1. For a loop with radii of a = A/10
and X /20, determine the directivity using the:



118

2.21.

2.22,

2.23.

2.24,

2.25.

2.26.
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(a) formulas (2-33a) by McDonald and (2-33b) by Pozar.
(b) computer program Directivity of this chapter.

Compare the answers with that of a very small loop represented by 1.5 or
1.76 dB.

Find the directivity (dimensionless and in dB) for the antenna of Problem 2.11
using numerical techniques with 10° uniform divisions and with the field eval-
uated at the

(a) midpoint
(b) trailing edge of each division.

Compute the directivity values of Problem 2.11 using the Directivity computer
program of this chapter.

The far-zone electric-field intensity (array factor) of an end-fire two-element
array antenna, placed along the z-axis and radiating into free-space, is given by

T efjkr
E:cos[z(cose—l)] , 0<b<m
r

Find the directivity using
(a) Kraus’ approximate formula
(b) the Directivity computer program of this chapter.

Repeat Problem 2.23 when

T e—jkr
E=cos[z(cos«9+1)] , 0<0=<m
r

The radiation intensity is represented by

U= Upsin(rsinf), 0<6 <nm/2and0<¢ <2m
“]o elsewhere

Find the directivity
(a) exactly
(b) using the computer program Directivity of this chapter.

The radiation intensity of an aperture antenna, mounted on an infinite ground
plane with z perpendicular to the aperture, is rotationally symmetric (not a
function of ¢), and it is given by

U— [sin(n sin@)]2

7T sin 6

Find the approximate directivity (dimensionless and in dB) using

(a) numerical integration. Use the Directivity computer program of this chapter.
(b) Kraus’ formula

(c) Tai and Pereira’s formula.
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The normalized far-zone field pattern of an antenna is given by

E_ (sinfcos’¢)? 0<fh<mand0<¢p <m/2,3m/2 <¢ <2m
1o elsewhere

Find the directivity using

(a) the exact expression

(b) Kraus’ approximate formula

(c) Tai and Pereira’s approximate formula

(d) the computer program Directivity of this chapter

The normalized field pattern of the main beam of a conical horn antenna,
mounted on an infinite ground plane with z perpendicular to the aperture, is
given by

Ji(ka sin 9)

sin 6

where a is its radius at the aperture. Assuming that a = A, find the
(a) half-power beamwidth
(b) directivity using Kraus’ approximate formula

A base station cellular communication systems lossless antenna has a maximum
gain of 16 dB (above isotropic) at 1,900 MHz. Assuming the input power to the
antenna is 8 watts, what is the maximum radiated power density (in watts/cm?)
at a distance of 100 meters? This will determine the safe level for human
exposure to electromagnetic radiation.

A uniform plane wave, of a form similar to (2-55), is traveling in the positive
z-direction. Find the polarization (linear, circular, or elliptical), sense of rotation
(CW or CCW), axial ratio (AR), and tilt angle t (in degrees) when

(@) Ex=Ey,Ap=¢y — ¢ =0

(b) Ex #Ey, Ap=¢y — ¢ =0

© Ex=E;,,Ap =0y, — ¢ = /2

d E, = Ey’ A¢p = d)y — ¢ = _77/2

e Ex=E;,,Ap=¢, — ¢ = /4

) E, = Ey’ A¢p = d)y — ¢ = _77/4

(g) Ex=05E,,Ap =¢, —p, =7/2

(h) Ex =0.5E,,A¢p = ¢, — ¢y = —1/2

In all cases, justify the answer.

Derive (2-66), (2-67), and (2-68).

Write a general expression for the polarization loss factor (PLF) of two linearly
polarized antennas if

(a) both lie in the same plane

(b) both do not lie in the same plane

A linearly polarized wave traveling in the positive z-direction is incident upon a

circularly polarized antenna. Find the polarization loss factor PLF (dimensionless
and in dB) when the antenna is (based upon its transmission mode operation)
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(a) right-handed (CW)
(b) left-handed (CCW)

A 300 MHz uniform plane wave, traveling along the x-axis in the negative x
direction, whose electric field is given by

E, = E,(ja, + 3a,)et*

where E, is a real constant, impinges upon a dipole antenna that is placed at
the origin and whose electric field radiated toward the x-axis in the positive x
direction is given by

E, = E,(a, +2a,)e "

where E, is a real constant. Determine the following:

(a) Polarization of the incident wave (including axial ratio and sense of rotation,
if any). You must justify (state why?).

(b) Polarization of the antenna (including axial ratio and sense of rotation, if
any). You must justify (state why?).

(c) Polarization loss factor (dimensionless and in dB).

z

A

Incident Wave b'e

Antenna
--------- > <« l

y

The electric field of a uniform plane wave traveling along the negative z direc-
tion is given by
El = (4, + jay)E,e™®

and is incident upon a receiving antenna placed at the origin and whose radiated
electric field, toward the incident wave, is given by
—jkr

E, = (&x + Z&x)E] ‘

r

Determine the following:

(a) Polarization of the incident wave, and why?
(b) Sense of rotation of the incident wave.

(c) Polarization of the antenna, and why?

(d) Sense of rotation of the antenna polarization.

(e) Losses (dimensionless and in dB) due to polarization mismatch between
the incident wave and the antenna.
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A ground-based helical antenna is placed at the origin of a coordinate system
and it is used as a receiving antenna. The normalized far-zone electric-field
pattern of the helical antenna in the transmitting mode is represented in the
direction 6,, ¢, by

— jkr

Ea = Eo(j&O + Zflqﬁ)fo(em ¢0)

The far-zone electric field transmitted by an antenna on a flying aircraft towards
6,, ¢o, which is received by the ground-based helical antenna, is represented by

+jkr
E, = E;Qag + jag) f1(6, ¢0)

Determine the following:

(a) Polarization (linear, circular, or elliptical) of the helical antenna in the
transmitting mode. State also the sense of rotation, if any.

(b) Polarization (linear, circular, or elliptical) of the incoming wave that
impinges upon the helical antenna. State also the sense of rotation, if any.

(c) Polarization loss (dimensionless and in dB) due to match/mismatch of the
polarizations of the antenna and incoming wave.

A circularly polarized wave, traveling in the positive z-direction, is incident
upon a circularly polarized antenna. Find the polarization loss factor PLF
(dimensionless and in dB) for right-hand (CW) and left-hand (CCW) wave
and antenna.

The electric field radiated by a rectangular aperture, mounted on an infinite
ground plane with z perpendicular to the aperture, is given by

E = [4gcos¢ — a4 singcos O] f(r, 0, ¢)

where f(r, 6, ¢) is a scalar function which describes the field variation of the
antenna. Assuming that the receiving antenna is linearly polarized along the
x-axis, find the polarization loss factor (PLF).

A circularly polarized wave, traveling in the +z-direction, is received by an
elliptically polarized antenna whose reception characteristics near the main lobe
are given approximately by

E, >~ (24, + ja,]1f(r.0,¢)

Find the polarization loss factor PLF (dimensionless and in dB) when the inci-
dent wave is

(a) right-hand (CW)
(b) left-hand (CCW)
circularly polarized. Repeat the problem when

E, >~ [24, — ja,]f(r.0.9)
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In each case, what is the polarization of the antenna? How does it match with
that of the wave?

A linearly polarized wave traveling in the negative z-direction has a tilt angle
(1) of 45°. Tt is incident upon an antenna whose polarization characteristics are
given by
. 44+ ja,
Pa = —F—=—
‘ J17
Find the polarization loss factor PLF (dimensionless and db).

An elliptically polarized wave traveling in the negative z-direction is received
by a circularly polarized antenna whose main lobe is along the 8 = 0 direction.
The unit vector describing the polarization of the incident wave is given by

. 24, + ja,
Py = —F7=—"
NE]
Find the polarization loss factor PLF (dimensionless and in dB) when the wave
that would be transmitted by the antenna is
(a) right-hand CP
(b) left-hand CP

A CW circularly polarized uniform plane wave is traveling in the +z direction.
Find the polarization loss factor PLF (dimensionless and in dB) assuming the
receiving antenna (in its transmitting mode) is

(a) CW circularly polarized

(b) CCW circularly polarized

A linearly polarized uniform plane wave traveling in the 4z direction, with

a power density of 10 milliwatts per square meter, is incident upon a CW

circularly polarized antenna whose gain is 10 dB at 10 GHz. Find the

(a) maximum effective area of the antenna (in square meters)

(b) power (in watts) that will be delivered to a load attached directly to the
terminals of the antenna.

A linearly polarized plane wave traveling along the negative z-axis is incident
upon an elliptically polarized antenna (either CW or CCW). The axial ratio
of the antenna polarization ellipse is 2:1 and its major axis coincides with the
principal x-axis. Find the polarization loss factor (PLF) assuming the incident
wave is linearly polarized in the

(a) x-direction

(b) y-direction

A wave traveling normally outward from the page (toward the reader) is
the resultant of two elliptically polarized waves, one with components of E
given by:

€, = 3coswr

€' =7Tcos (a)t + %)
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and the other with components given by:
%/}f = 2coswt
€ =3cos (a)t — %)

(a) What is the axial ratio of the resultant wave?
(b) Does the resultant vector E rotate clockwise or counterclockwise?

A linearly polarized antenna lying in the x-y plane is used to determine the
polarization axial ratio of incoming plane waves traveling in the negative z-
direction. The polarization of the antenna is described by the unit vector

Pa = Aa,cosy + 4, siny

1 1
09 1
0.8~ 1
0.7 - 1
0.6 - 1
0.5
04 1
03 1
0.2 1
0.1 1

0

PLF
PLF

| | | | | | | | | | | | | |
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
v (deg) v (deg)

(a) PLF versus y (b) PLF versus y

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

PLF

| | | | |
0 50 100 150 200 250 300 350
Y (deg)

(c) PLF versus y

where ¥ is an angle describing the orientation in the x-y plane of the receiving
antenna. Above are the polarization loss factor (PLF) versus receiving antenna
orientation curves obtained for three different incident plane waves. For each
curve determine the axial ratio of the incident plane wave.

A X/2 dipole, with a total loss resistance of 1 ohm, is connected to a generator
whose internal impedance is 50 4+ j25 ohms. Assuming that the peak voltage
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of the generator is 2 V and the impedance of the dipole, excluding the loss
resistance, is 73 + j42.5 ohms, find the power

(a) supplied by the source (real)
(b) radiated by the antenna
(c) dissipated by the antenna

The antenna and generator of Problem 2.47 are connected via a 50-ohm A/2-
long lossless transmission line. Find the power

(a) supplied by the source (real)
(b) radiated by the antenna
(c) dissipated by the antenna

An antenna with a radiation resistance of 48 ohms, a loss resistance of 2 ohms,
and a reactance of 50 ohms is connected to a generator with open-circuit voltage
of 10 V and internal impedance of 50 ohms via a A/4-long transmission line
with characteristic impedance of 100 ohms.

(a) Draw the equivalent circuit

(b) Determine the power supplied by the generator

(c) Determine the power radiated by the antenna

A transmitter, with an internal impedance Z, (real), is connected to an antenna
through a lossless transmission line of length / and characteristic impedance
Zy. Find a simple expression for the ratio between the antenna gain and its
realized gain.

Z

0

\

in V(x) = A [e7 + T(0)e7*

|
|
|
\
|
} | 1) = A [677 _ 10yt
| %

|

Transmitter Transmission line

Vi = strength of voltage source

Zin = Riy, + jX;, = input impedance of the antenna

Zy = Ry = characteristic impedance of the line

Piccepred = power accepted by the antenna { Pyceeprea = Re[V (0)17(0)]}
Pyaitable = power delivered to a matched load [i.e., Z;, = Z§ = Zo]

The input reactance of an infinitesimal linear dipole of length A /60 and radius
a = 1/200 is given by

_polin(/2a) — 1]

Xm ~
tan(k€,2)

Assuming the wire of the dipole is copper with a conductivity of 5.7 x 107S/m,
determine at f = 1 GHz the

(a) loss resistance
(b) radiation resistance
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(c) radiation efficiency
(d) VSWR when the antenna is connected to a 50-ohm line

A dipole antenna consists of a circular wire of length /. Assuming the current
distribution on the wire is cosinusoidal, i.e.,

T, ,
’z(Z>=10005<72) —1/2<7 <1)2

where [ is a constant, derive an expression for the loss resistance R;, which
is one-half of (2-90b).

The E-field pattern of an antenna, independent of ¢, varies as follows:

1 0° <0 <45°
E={0 45 <6<90°
1 90° <6 < 180°

(a) What is the directivity of this antenna?

(b) What is the radiation resistance of the antenna at 200 m from it if the field
is equal to 10 V/m (rms) for & = 0° at that distance and the terminal current
is 5 A (rms)?

The far-zone field radiated by a rectangular aperture mounted on a ground

plane, with dimensions a and b and uniform aperture distribution, is given by
(see Table 12.1)

E = CAZ@EQ +CA1¢E¢

sin X sinY ka

Eg = Csing v X=7sinecos¢; 0<6<90°
in X sinY kb
Ey = Ccos@cosq&sn;( SH; Y = > sinfsing; 0<¢ < 180°

where C is a constant and 0 < 8 < 90° and 0 < ¢ < 180°. For an aperture with
a = 3\, b = 2), determine the

(a) maximum partial directivities Dy, Dy (dimensionless and in dB) and

(b) total maximum directivity D, (dimensionless and in dB). Compare with
that computed using the equation in Table 12.1.

Use the computer program Directivity of this chapter.

Repeat Problem 2.54 when the aperture distribution is that of the dominant
TE ;9 mode of a rectangular waveguide, or from Table 12.1

E~ ayEy + &¢E¢,

£ — rrC . cos X sinY
9_—5 sin ¢ T2y ka
(X)? — (—) X = —sinf cos ¢
2 2
E 7TC P " cos X sinY y kb . 0 sin ¢
= —— COS COS = — SIn Sin
(Z’ ) T 2 Y 2
0= (3)
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Repeat Problem 2.55 when the aperture dimensions are those of an X-band
rectangular waveguide with a = 2.286 cm (0.9 in.), » = 1.016 cm (0.4 in.) and
frequency of operation is 10 GHz.

Repeat Problem 2.54 for a circular aperture with a uniform distribution and
whose far-zone fields are, from Table 12.2
E~agEq + &¢ Ey

N(Z) _ .
7 Z = kasinb; 0<60<90

1(2) 0<¢ < 180°
V4

EQ = ]C1 sin¢

Ey = jCicosfcos

where C| is a constant and J;(Z) is the Bessel function of the first kind. Assume
a=1.5A\.

Repeat Problem 2.57 when the aperture distribution is that of the dominant
TE;; mode of a circular waveguide, or from Table 12.2

E ~ayEy + &¢E¢

Eg=C sinngl(Z)
o Z Z = kasin6; 0<6<90°
J(Z _ °
E¢,=Czcosécos¢#)2 JA(Z) = Jo(2) 0<¢ =180
Z - N1(2)/Z;
O
X11

where C; is a constant, J{(Z) is the derivative of J;(Z), x{, = 1.841 is the first
zero of J{(Z), and J,(Z) is the Bessel function of the first kind of order zero.

Repeat 2.58 when the radius of the aperture is a = 1.143 cm (0.45 in.) and the
frequency of operation is 10 GHz.

A 1-m long dipole antenna is driven by a 150 MHz source having a source
resistance of 50 ohms and a voltage of 100 V. If the ohmic resistance of the
antennas is given by R; = 0.625 ohms, find the:

(a) Current going into the antenna (/)
(b) Power dissipated by the antenna

(c) Power radiated by the antenna

(d) Radiation efficiency of the antenna

The field radiated by an infinitesimal dipole of very small length (¢ < 1/50),
and of uniform current distribution I,, is given by (4-26a) or

N N kLl
E = a9Ey ~ Gpjn——e ¥ sin6
4y
Determine the
(a) vector effective length

(b) maximum value of the vector effective length. Specify the angle.



2.62.

2.63.

2.64.

2.65.

2.66.

2.67.

2.68.

PROBLEMS 127

(c) ratio of the maximum effective length to the physical length .

The field radiated by a half-wavelength dipole (¢ = A/2), with a sinusoidal
current distribution, is given by (4-84) or

where I, is the maximum current. Determine the

(a) vector effective length

(b) maximum value of the vector effective length. Specify the angle.

(c) ratio of the maximum effective length to the physical length £.

A uniform plane wave, of 10 3watts/cm? power density, is incident upon an
infinitesimal dipole of length ¢ = A/50 and uniform current distribution, as

shown in Figure 2.29(a). For a frequency of 10 GHz, determine the maximum
open-circuited voltage at the terminals of the antenna. See Problem 2.61.

Repeat Problem 2.63 for a small dipole with triangular current distribution and
length ¢ = 1/10. See Example 2.14.

Repeat Problem 2.63 for a half-wavelength dipole (¢ = A/2) with sinusoidal
current distribution. See Problem 2.62.

Show that the effective length of a linear antenna can be written as

AclZ,?
nRr

I =

which for a lossless antenna and maximum power transfer reduces to

A, and A,, represent, respectively, the effective and maximum effective aper-
tures of the antenna while 7 is the intrinsic impedance of the medium.

An antenna has a maximum effective aperture of 2.147 m? at its operating
frequency of 100 MHz. It has no conduction or dielectric losses. The input
impedance of the antenna itself is 75 ohms, and it is connected to a 50-ohm
transmission line. Find the directivity of the antenna system (“system” mean-
ing includes any effects of connection to the transmission line). Assume no
polarization losses.

A small circular parabolic reflector, often referred to as dish, is now being
advertised as a TV antenna for direct broadcast. Assuming the diameter of
the antenna is 1 meter, the frequency of operation is 3 GHz, and its aperture
efficiency is 68%, determine the following:

(a) Physical area of the reflector (in m?).
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(b) Maximum effective area of the antenna (in m?).
(c) Maximum directivity (dimensionless and in dB).
(d) Maximum power (in watts) that can be delivered to the TV if the power

density of the wave incident upon the antenna is /0 pwatts /m?. Assume
no losses between the incident wave and the receiver (TV).

An incoming wave, with a uniform power density equal to 10~ W/m? is inci-
dent normally upon a lossless horn antenna whose directivity is 20 dB. At a
frequency of 10 GHz, determine the very maximum possible power that can be
expected to be delivered to a receiver or a load connected to the horn antenna.
There are no losses between the antenna and the receiver or load.

A linearly polarized aperture antenna, with a uniform field distribution over its
area, is used as a receiving antenna. The antenna physical area over its aperture
is 10 cm?, and it is operating at 10 GHz. The antenna is illuminated with a
circularly polarized plane wave whose incident power density is 10 mwatts/cm?.
Assuming the antenna element itself is lossless, determine its

(a) gain (dimensionless and in dB).

(b) maximum power (in watts) that can be delivered to a load connected to the
antenna. Assume no other losses between the antenna and the load.

The far-zone power density radiated by a helical antenna can be approxi-
mated by

1
Wi = Wy ~ a, C”r_z cost o

The radiated power density is symmetrical with respect to ¢, and it exists only
in the upper hemisphere (0 <6 <m/2,0 < ¢ < 2m); C, is a constant.
Determine the following:

(a) Power radiated by the antenna (in watts).

(b) Maximum directivity of the antenna (dimensionless and in dB)

(c) Direction (in degrees) along which the maximum directivity occurs.

(d) Maximum effective area (in m?) at 1 GHz.

(e) Maximum power (in watts) received by the antenna, assuming no losses,
at 1 GHz when the antenna is used as a receiver and the incident power
density is 10 mwatts/m? .

For an X-band (8.2—12.4 GHz) rectangular horn, with aperture dimensions of
5.5 cm and 7.4 cm, find its maximum effective aperture (in cm?) when its gain
(over isotropic) is

(a) 14.8 dB at 8.2 GHz

(b) 16.5 dB at 10.3 GHz

(c) 18.0 dB at 12.4 GHz

For Problem 2.54 compute the

(a) maximum effective area (in A?) using the computer program Directiv-
ity of this chapter. Compare with that computed using the equation in
Table 12.1.
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(b) aperture efficiencies of part (a). Are they smaller or larger than unity
and why?

Repeat Problem 2.73 for Problem 2.55.
Repeat Problem 2.73 for Problem 2.56.
Repeat Problem 2.73 for Problem 2.57. Compare with those in Table 12.2.
Repeat Problem 2.73 for Problem 2.58. Compare with those in Table 12.2.
Repeat Problem 2.73 for Problem 2.59. Compare with those in Table 12.2.

A 30-dB, right-circularly polarized antenna in a radio link radiates 5 W of power
at 2 GHz. The receiving antenna has an impedance mismatch at its terminals,
which leads to a VSWR of 2. The receiving antenna is about 95% efficient and
has a field pattern near the beam maximum given by E, = (24, + ja,)F,. (0, ¢).
The distance between the two antennas is 4,000 km, and the receiving antenna is
required to deliver 1074 W to the receiver. Determine the maximum effective
aperture of the receiving antenna.

The radiation intensity of an antenna can be approximated by

cos*(@) 0° <6 <90° . .
U, o) = with 0° < ¢ < 360
0 90° <6 < 180°

Determine the maximum effective aperture (in mz) of the antenna if its fre-
quency of operation is f = 10 GHz.

A communication satellite is in stationary (synchronous) orbit about the earth
(assume altitude of 22,300 statute miles). Its transmitter generates 8.0 W.
Assume the transmitting antenna is isotropic. Its signal is received by the 210-
ft diameter tracking paraboloidal antenna on the earth at the NASA tracking
station at Goldstone, California. Also assume no resistive losses in either
antenna, perfect polarization match, and perfect impedance match at both
antennas. At a frequency of 2 GHz, determine the:

(a) power density (in watts/m?) incident on the receiving antenna.
(b) power received by the ground-based antenna whose gain is 60 dB.

A lossless (e, = 1) antenna is operating at 100 MHz and its maximum effective
aperture is 0.7162 m? at this frequency. The input impedance of this antenna is
75 ohms, and it is attached to a 50-ohm transmission line. Find the directivity
(dimensionless) of this antenna if it is polarization-matched.

A resonant, lossless (e, = 1.0) half-wavelength dipole antenna, having a direc-
tivity of 2.156 dB, has an input impedance of 73 ohms and is connected to a
lossless, 50 ohms transmission line. A wave, having the same polarization as
the antenna, is incident upon the antenna with a power density of 5 W/m? at
a frequency of 10 MHz. Find the received power available at the end of the
transmission line.

Two X-band (8.2—12.4 GHz) rectangular horns, with aperture dimensions of
5.5 cm and 7.4 cm and each with a gain of 16.3 dB (over isotropic) at 10 GHz,
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are used as transmitting and receiving antennas. Assuming that the input power
is 200 mW, the VSWR of each is 1.1, the conduction-dielectric efficiency is
100%, and the antennas are polarization-matched, find the maximum received
power when the horns are separated in air by

(@5m (b)5S0m (c) 500 m

Transmitting and receiving antennas operating at 1 GHz with gains (over
isotropic) of 20 and 15 dB, respectively, are separated by a distance of 1 km.
Find the maximum power delivered to the load when the input power is 150 W.
Assume that the

(a) antennas are polarization-matched

(b) transmitting antenna is circularly polarized (either right- or left-hand) and
the receiving antenna is linearly polarized.

Two lossless, polarization-matched antennas are aligned for maximum radiation
between them, and are separated by a distance of 50A. The antennas are matched
to their transmission lines and have directivities of 20 dB. Assuming that the
power at the input terminals of the transmitting antenna is 10 W, find the power
at the terminals of the receiving antenna.

Repeat Problem 2.86 for two antennas with 30 dB directivities and separated
by 100A. The power at the input terminals is 20 W.

Transmitting and receiving antennas operating at 1 GHz with gains of 20 and
15 dB, respectively, are separated by a distance of 1 km. Find the power deliv-
ered to the load when the input power is 150 W. Assume the PLF = 1.

A series of microwave repeater links operating at 10 GHz are used to relay tele-
vision signals into a valley that is surrounded by steep mountain ranges. Each
repeater consists of a receiver, transmitter, antennas, and associated equipment.
The transmitting and receiving antennas are identical horns, each having gain
over isotropic of 15 dB. The repeaters are separated in distance by 10 km. For
acceptable signal-to-noise ratio, the power received at each repeater must be
greater than 10 nW. Loss due to polarization mismatch is not expected to exceed
3 dB. Assume matched loads and free-space propagation conditions. Determine
the minimum transmitter power that should be used.

A one-way communication system, operating at 100 MHz, uses two identical
A/2 vertical, resonant, and lossless dipole antennas as transmitting and receiv-
ing elements separated by 10 km. In order for the signal to be detected by the
receiver, the power level at the receiver terminals must be at least 1 wW. Each
antenna is connected to the transmitter and receiver by a lossless 50-2 trans-
mission line. Assuming the antennas are polarization-matched and are aligned
so that the maximum intensity of one is directed toward the maximum radiation
intensity of the other, determine the minimum power that must be generated
by the transmitter so that the signal will be detected by the receiver. Account
for the proper losses from the transmitter to the receiver.

In a long-range microwave communication system operating at 9 GHz, the
transmitting and receiving antennas are identical, and they are separated by
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10,000 m. To meet the signal-to-noise ratio of the receiver, the received power
must be at least 10 wW. Assuming the two antennas are aligned for maximum
reception to each other, including being polarization-matched, what should the
gains (in dB) of the transmitting and receiving antennas be when the input
power to the transmitting antenna is 10 W?

A mobile wireless communication system operating at 2 GHz utilizes two anten-
nas, one at the base station and the other at the mobile unit, which are separated
by 16 kilometers. The transmitting antenna, at the base station, is circularly-
polarized while the receiving antenna, at the mobile station, is linearly polarized.
The maximum gain of the transmitting antenna is 20 dB while the gain of the
receiving antennas is unknown. The input power to the transmitting antenna
is 100 watts and the power received at the receiver, which is connected to
the receiving antenna, is 5 nanowatts. Assuming that the two antennas are
aligned so that the maximum of one is directed toward the maximum of the
other, and also assuming no reflection/mismatch losses at the transmitter or the
receiver, what is the maximum gain of the receiving antenna (dimensions and
in dB)?

A rectangular X-band horn, with aperture dimensions of 5.5 cm and 7.4 cm and
a gain of 16.3 dB (over isotropic) at 10 GHz, is used to transmit and receive
energy scattered from a perfectly conducting sphere of radius @ = 5A. Find the
maximum scattered power delivered to the load when the distance between the
horn and the sphere is

(a) 200A  (b) 5001

Assume that the input power is 200 mW, and the radar cross section is equal
to the geometrical cross section.

A radar antenna, used for both transmitting and receiving, has a gain of 150
(dimensionless) at its operating frequency of 5 GHz. It transmits 100 kW, and
is aligned for maximum directional radiation and reception to a target 1 km
away having a radar cross section of 3 m>. The received signal matches the
polarization of the transmitted signal. Find the received power.

In an experiment to determine the radar cross section of a Tomahawk cruise
missile, a 1,000 W, 300 MHz signal was transmitted toward the target, and the
received power was measured to be 0.1425 mW. The same antenna, whose
gain was 75 (dimensionless), was used for both transmitting and receiving.
The polarizations of both signals were identical (PLF = 1), and the distance
between the antenna and missile was 500 m. What is the radar cross section of
the cruise missile?

Repeat Problem 2.95 for a radar system with 1,000 W, 100 MHz transmitted
signal, 0.01 W received signal, an antenna with a gain of 75 (dimensionless),
and separation between the antenna and target of 700 m.

The maximum radar cross section of a resonant linear 1/2 dipole is approx-
imately 0.86A%. For a monostatic system (i.e., transmitter and receiver at the
same location), find the received power (in W) if the transmitted power is
100 W, the distance of the dipole from the transmitting and receiving antennas
is 100 m, the gain of the transmitting and receiving antennas is 15 dB each,
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2.98.

2.99.

FUNDAMENTAL PARAMETERS OF ANTENNAS

and the frequency of operation is 3 GHz. Assume a polarization loss factor of
—1 dB.

The effective antenna temperature of an antenna looking toward zenith is
approximately 5 K. Assuming that the temperature of the transmission line
(waveguide) is 72 °F, find the effective temperature at the receiver terminals
when the attenuation of the transmission line is 4 dB/100 ft and its length is
(a) 2 ft (b) 100 ft

Compare it to a receiver noise temperature of about 54 K.

Derive (2-146). Begin with an expression that assumes that the physical tem-
perature and the attenuation of the transmission line are not constant.
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CHAPTERS
e e

Radiation Integrals and Auxiliary
Potential Functions

3.1 INTRODUCTION

In the analysis of radiation problems, the usual procedure is to specify the sources and
then require the fields radiated by the sources. This is in contrast to the synthesis problem
where the radiated fields are specified, and we are required to determine the sources.

It is a very common practice in the analysis procedure to introduce auxiliary func-
tions, known as vector potentials, which will aid in the solution of the problems. The
most common vector potential functions are the A (magnetic vector potential) and F
(electric vector potential). Another pair is the Hertz potentials IT, and ITj. Although
the electric and magnetic field intensities (E and H) represent physically measurable
quantities, among most engineers the potentials are strictly mathematical tools. The
introduction of the potentials often simplifies the solution even though it may require
determination of additional functions. While it is possible to determine the E and H
fields directly from the source-current densities J and M, as shown in Figure 3.1, it is
usually much simpler to find the auxiliary potential functions first and then determine
the E and H. This two-step procedure is also shown in Figure 3.1.

The one-step procedure, through path 1, relates the E and H fields to J and M by
integral relations. The two-step procedure, through path 2, relates the A and F (or II,
and IT,) potentials to J and M by integral relations. The E and H are then determined
simply by differentiating A and F (or II, and II,). Although the two-step procedure
requires both integration and differentiation, where path 1 requires only integration,
the integrands in the two-step procedure are much simpler.

The most difficult operation in the two-step procedure is the integration to determine
A and F (or II, and II,). Once the vector potentials are known, then E and H can
always be determined because any well-behaved function, no matter how complex, can
always be differentiated.

The integration required to determine the potential functions is restricted over the
bounds of the sources J and M. This will result in the A and F (or II, and II;) to
be functions of the observation point coordinates; the differentiation to determine E
and H must be done in terms of the observation point coordinates. The integration

Antenna Theory: Analysis Design, Third Edition, by Constantine A. Balanis
ISBN 0-471-66782-X Copyright © 2005 John Wiley & Sons, Inc.
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Integration

Sources path 1 Radiated fields
J. M E,H

Integration
path 2

Vector potentials
AF
or
He’ Hh

Figure 3.1 Block diagram for computing fields radiated by electric and magnetic sources.
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Figure 3.2 Coordinate systems for computing fields radiated by sources.
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in the one-step procedure also requires that its limits be determined by the bounds of
the sources.

The vector Hertz potential II, is analogous to A and II, is analogous to F. The
functional relation between them is a proportionality constant which is a function of the
frequency and the constitutive parameters of the medium. In the solution of a problem,
only one set, A and F or II, and II,, is required. The author prefers the use of A and
F, which will be used throughout the book. The derivation of the functional relations
between A and II,, and F and II, are assigned at the end of the chapter as problems.
(Problems 3.1 and 3.2).

3.2 THE VECTOR POTENTIAL A FOR AN ELECTRIC CURRENT SOURCE J

The vector potential A is useful in solving for the EM field generated by a given har-
monic electric current J. The magnetic flux B is always solenoidal; that is, V - B = 0.
Therefore, it can be represented as the curl of another vector because it obeys the

vector identity
V.-VxA=0 (3-1)

where A is an arbitrary vector. Thus we define

By=uH, =V xA (3-2)
or
1
H,y = ;V x A (3-2a)

where subscript A indicates the field due to the A potential. Substituting (3-2a) into
Maxwell’s curl equation

VXEs=—jouH, (3-3)
reduces it to
VxXEy=—jouH; = —joV x A (3-4)
which can also be written as
V x [Ex + joA] =0 (3-5)
From the vector identity
V x (-=V¢,) =0 (3-6)
and (3-5), it follows that
E, + joA = V¢, (3-7)

or

Ey=-V¢, — joA (3-7a)
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The scalar function ¢, represents an arbitrary electric scalar potential which is a func-
tion of position.
Taking the curl of both sides of (3-2) and using the vector identity
VxVxA=V(V-A)—-V?A (3-8)

reduces it to
V x (uHy) = V(V-A) — VA (3-8a)

For a homogeneous medium, (3-8a) reduces to
uV xHy =V(V-A) — VA (3-9)

Equating Maxwell’s equation

V xHy =J+ jweE, (3-10)

to (3-9) leads to
uJ + joueE, = V(V - A) — VA (3-11)

Substituting (3-7a) into (3-11) reduces it to

VA +IPA = —uJ + V(V - A) + V(jouep,)
=—uJ+V(V- A+ jouecp,)

(3-12)

where k2 = @’ €.
In (3-2), the curl of A was defined. Now we are at liberty to define the divergence
of A, which is independent of its curl. In order to simplify (3-12), let

1

V. A=—joeup, = ¢ = ——
Jjoue

(3-13)

which is known as the Lorentz condition. Substituting (3-13) into (3-12) leads to

VA + KA = —uJ (3-14)

In addition, (3-7a) reduces to

1
Ey=-V¢, — joA = —jwA — j—V(V - A) (3-15)
wLE

Once A is known, H4 can be found from (3-2a) and E4 from (3-15). E4 can just as
easily be found from Maxwell’s equation (3-10) with J = 0. It will be shown later how
to find A in terms of the current density J. It will be a solution to the inhomogeneous
Helmholtz equation of (3-14).
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3.3 THE VECTOR POTENTIAL F FOR A MAGNETIC CURRENT SOURCE M

Although magnetic currents appear to be physically unrealizable, equivalent magnetic
currents arise when we use the volume or the surface equivalence theorems. The fields
generated by a harmonic magnetic current in a homogeneous region, with J = 0 but
M # 0, must satisfy V - D = 0. Therefore, Er can be expressed as the curl of the
vector potential F by

1
Er=—-V xF (3-16)

Substituting (3-16) into Maxwell’s curl equation
V x HF = ja)eEF (3-17)

reduces it to
VxHrp + joF) =0 (3-18)

From the vector identity of (3-6), it follows that

Hf = —-V¢, — joF (3-19)

where ¢,, represents an arbitrary magnetic scalar potential which is a function of
position. Taking the curl of (3-16)

1 1
VxEr=—-—-VxVxF=——[VV.F - V%] (3-20)
€ €

and equating it to Maxwell’s equation

VxEr=-M-— jouHpg (3-21)

leads to
V?F + joueHr = VV . F — eM (3-22)

Substituting (3-19) into (3-22) reduces it to
VF 4+ k°F = —eM + V(V - F) + V(joued,) (3-23)

By letting

V.F= —ja)ﬂﬂ,bm = (;bm = - V.F (3—24)

Jjoue
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reduces (3-23) to

V2F + k*F = —eM (3-25)

and (3-19) to

H; = —joF — ——V(V . F) (3-26)
WLE

Once F is known, Ef can be found from (3-16) and Hr from (3-26) or (3-21) with
M = 0. It will be shown later how to find F once M is known. It will be a solution to
the inhomogeneous Helmholtz equation of (3-25).

3.4 ELECTRIC AND MAGNETIC FIELDS FOR ELECTRIC (J)
AND MAGNETIC (M) CURRENT SOURCES

In the previous two sections we have developed equations that can be used to find the
electric and magnetic fields generated by an electric current source J and a magnetic
current source M. The procedure requires that the auxiliary potential functions A and F
generated, respectively, by J and M are found first. In turn, the corresponding electric
and magnetic fields are then determined (E4, Hy due to A and Eg, Hr due to F). The
total fields are then obtained by the superposition of the individual fields due to A and
F (J and M).
In summary form, the procedure that can be used to find the fields is as follows:

Summary

1. Specify J and M (electric and magnetic current density sources).
2. a. Find A (due to J) using

n e—ij ,
\4

which is a solution of the inhomogeneous vector wave equation of (3-14).
b. Find F (due to M) using

€ eiij ,
F = E///M R dv (3-28)
1%

which is a solution of the inhomogeneous vector wave equation of (3-25). In
(3-27) and (3-28), k? = w’jue and R is the distance from any point in the
source to the observation point. In a latter section, we will demonstrate that
(3-27) is a solution to (3-14) as (3-28) is to (3-25).
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3. a. Find H, using (3-2a) and E4 using (3-15). E4 can also be found using
Maxwell’s equation of (3-10) with J = 0.
b. Find Ef using (3-16) and Hy using (3-26). Hy can also be found using
Maxwell’s equation of (3-21) with M = 0.
4. The total fields are then determined by

1 1
E=E;,+Er=—jwoA—-—j—V(V-A)— -V xF (3-29)
wLe €
or
1 1
E=E,+Ef=—VxHy—--VxF (3-29a)
Jjwe €
and
1 . !
H=H,+Hr=—-VxA—joF—j—V(V.F) (3-30)
n wue
or
1 1
H=H;+Hr=-VxA-—VxEyp (3-30a)
I Jjour

Whether (3-15) or (3-10) is used to find E4 and (3-26) or (3-21) to find Hy depends
largely upon the problem. In many instances one may be more complex than the other
or vice versa. In computing fields in the far-zone, it will be easier to use (3-15) for E,4
and (3-26) for Hy because, as it will be shown, the second term in each expression
becomes negligible in that region.

3.5 SOLUTION OF THE INHOMOGENEOUS VECTOR POTENTIAL
WAVE EQUATION

In the previous section we indicated that the solution of the inhomogeneous vector
wave equation of (3-14) is (3-27).

To derive it, let us assume that a source with current density J,, which in the limit is
an infinitesimal source, is placed at the origin of a x, y, z coordinate system, as shown
in Figure 3.2(a). Since the current density is directed along the z-axis (J;), only an A,
component will exist. Thus we can write (3-14) as

VZA, + A, = —ul. (3-31)
At points removed from the source (J, = 0), the wave equation reduces to

V2A. +KA. =0 (3-32)
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Since in the limit the source is a point, it requires that A, is not a function of direction
(6 and ¢); in a spherical coordinate system, A, = A,(r) where r is the radial distance.
Thus (3-32) can be written as

19 0A
VIAL() + KAL) = — — [ﬂﬂ} +KAL() =0 (3:33)
r=ar ar
which when expanded reduces to
d*A 2dA
) 2440 g2 ) =0 (3-34)

dr? r dr

The partial derivative has been replaced by the ordinary derivative since A, is only a
function of the radial coordinate.
The differential equation of (3-34) has two independent solutions

e—jkr
A =C (3-35)
r
e+jkr
Ap =0, (3-36)

Equation (3-35) represents an outwardly (in the radial direction) traveling wave and
(3-36) describes an inwardly traveling wave (assuming an e/® time variation). For
this problem, the source is placed at the origin with the radiated fields traveling in the
outward radial direction. Therefore, we choose the solution of (3-35), or

efjkr
A=A, =C (3-37)
r
In the static case (w = 0, k = 0), (3-37) simplifies to
Cy
A, = — (3-38)

r

which is a solution to the wave equation of (3-32), (3-33), or (3-34) when k = 0. Thus
at points removed from the source, the time-varying and the static solutions of (3-37)
and (3-38) differ only by the e /%" factor; or the time-varying solution of (3-37) can
be obtained by multiplying the static solution of (3-38) by e=/*".
In the presence of the source (J, # 0) and k = 0, the wave equation of (3-31)
reduces to
VA, = —ul. (3-39)

This equation is recognized to be Poisson’s equation whose solution is widely doc-

umented. The most familiar equation with Poisson’s form is that relating the scalar
electric potential ¢ to the electric charge density p. This is given by

V3 =—= (3-40)
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1 Iy
¢ = —/]f—dv’ (3-41)
dme r
|4

where r is the distance from any point on the charge density to the observation point.
Since (3-39) is similar in form to (3-40), its solution is similar to (3-41), or

J
A =2 /// N (3-42)
4 r
\%

Equation (3-42) represents the solution to (3-31) when k = O (static case). Using the
comparative analogy between (3-37) and (3-38), the time-varying solution of (3-31)
can be obtained by multiplying the static solution of (3-42) by e~/*". Thus

m e—jkr
A, = H/// J, . dv’ (3-43)
v

which is a solution to (3-31).
If the current densities were in the x- and y-directions (J; and J,), the wave equation
for each would reduce to

whose solution is

VA, + KA, = —uld, (3-44)
VA, + kA, = —ud, (3-45)

with corresponding solutions similar in form to (3-43), or

_ K e
Ax = E/// Jx ; dv (3—46)
v
0 e
Ay = E/// Jy . dv (3-47)
v

The solutions of (3-43), (3-46), and (3-47) allow us to write the solution to the
vector wave equation of (3-14) as

i e—jkr ,
A= E///J —dv (3-48)
Vv
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If the source is removed from the origin and placed at a position represented by the
primed coordinates (x’, y’, z’), as shown in Figure 3.2(b), (3-48) can be written as

" o—JkR
A(x,y,z)=5// J&' ', 2) R dv’ (3-49)
\%4

where the primed coordinates represent the source, the unprimed the observation point,
and R the distance from any point on the source to the observation point. In a similar
fashion we can show that the solution of (3-25) is given by

€ /A e /HR /
FOC,y,Z)ZE// M(x,y,z)Tdv (3_50)
\4

If J and M represent linear densities (m~'), (3-49) and (3-50) reduce to surface

integrals, or
m —/kR
— 4—// (.x y Z) S/ (3_51)

S

7ij

€ /
= 4—f M, (x', y/, z) ds (3-52)
s

For electric and magnetic currents I, and I,,,, (3-51) and (3-52) reduce to line integrals
of the form

M / / / ei]kR /

A=" | L&'y, 2 dl -
i /; ',y ) R (3-53)
€ efij

F — Im /’ /’ '/ dl/ _
s fc &y, 2) R (3-54)

3.6 FAR-FIELD RADIATION
The fields radiated by antennas of finite dimensions are spherical waves. For these radi-

ators, a general solution to the vector wave equation of (3-14) in spherical components,
each as a function of r, 6, ¢, takes the general form of

A=48,A,(r0,0)+8A¢(r,0,¢) +8,A,(r. 0, ¢) (3-55)
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The amplitude variations of  in each component of (3-55) are of the form 1/r",n =
1,2,...[1], [2]. Neglecting higher order terms of 1/7"(1/r" = 0,n = 2, 3, ...) reduces
(3-55) to

—jkr

A~[4,A0,0)+8,A,0,0)+ ?1¢A;5(9, ?)] T — 00 (3-56)

The r variations are separable from those of 6 and ¢. This will be demonstrated in the
chapters that follow by many examples.
Substituting (3-56) into (3-15) reduces it to

1 4 1
E = ;{—jwe”’"[ﬁr(O) +89Ap(0,9) +8,A50, )]} + ﬁ{~ h4eee (B-5T)

The radial E-field component has no 1/r terms, because its contributions from the first

and second terms of (3-15) cancel each other.
Similarly, by using (3-56), we can write (3-2a) as

1| .o _; 1
H=—1j—¢/V[a,0)+8A50,9) — 84,0, )] + (- )+ (3-57a)
e ¢ 2
where n = /ut/€ is the intrinsic impedance of the medium.

Neglecting higher order terms of 1/r", the radiated E- and H-fields have only 6
and ¢ components. They can be expressed as

Far-Field Region
E.~0 .
Ey~—jwAy t | Eax—joA (3-58a)
Ey = —jwAy (for the 6 and ¢ components only
since E, >~ 0)
H ~0 -
W E¢ H, ~ a, _ LW
~ TA = a~—xEs=—j—4 x A
Hp >~ +j . Ay =S n n (3-58b)
Hy~ — jg Ag = +& (for the 6 and ¢ components only
n n since H, >~ 0)

Radial field components exist only for higher order terms of 1/r".
In a similar manner, the far-zone fields due to a magnetic source M (potential F)
can be written as

Far-Field Region
H ~0 ]
Hy~ —joF, { o | HFr ~ —joF (3-59a)
Hy =~ —joFy (for the 6 and ¢ components only
since H, ~ 0)
E,.~0

Ey~ —jonFy =nHy = | Er=-n8, x Hp = jona, x F | (3.50p)

Ey = +jonky = —nHs (for the 6 and ¢ components only
since E, >~ 0)
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Simply stated, the corresponding far-zone E- and H-field components are orthogonal
to each other and form TEM (to r) mode fields. This is a very useful relation, and it
will be adopted in the chapters that follow for the solution of the far-zone radiated
fields. The far-zone (far-field) region for a radiator is defined in Figures 2.7 and 2.8.
Its smallest radial distance is 2D?/A where D is the largest dimension of the radiator.

3.7 DUALITY THEOREM

When two equations that describe the behavior of two different variables are of the
same mathematical form, their solutions will also be identical. The variables in the two
equations that occupy identical positions are known as dual quantities and a solution
of one can be formed by a systematic interchange of symbols to the other. This concept
is known as the duality theorem.

Comparing Equations (3-2a), (3-3), (3-10), (3-14), and (3-15) to (3-16), (3-17),
(3-21), (3-25), and (3-26), respectively, it is evident that they are to each other dual
equations and their variables dual quantities. Thus knowing the solutions to one set
(i.e., J # 0, M = 0), the solution to the other set (J = 0, M # 0) can be formed by
a proper interchange of quantities. The dual equations and their dual quantities are
listed, respectively in Tables 3.1 and 3.2 for electric and magnetic sources. Duality
only serves as a guide to form mathematical solutions. It can be used in an abstract
manner to explain the motion of magnetic charges giving rise to magnetic currents,
when compared to their dual quantities of moving electric charges creating electric
currents. It must, however, be emphasized that this is purely mathematical in nature
since it is known, as of today, that there are no magnetic charges or currents in nature.

3.8 RECIPROCITY AND REACTION THEOREMS

We are all well familiar with the reciprocity theorem, as applied to circuits, which
states that “in any network composed of linear, bilateral, lumped elements, if one
places a constant current (voltage) generator between two nodes (in any branch) and

TABLE 3.1 Dual Equations for Electric (J) and
Magnetic (M) Current Sources

Electric Sources Magnetic Sources
J#0,M=0) J=0,M=#0)
VxE s =—jouHy V xHp = jweEp
VXHA=J+jw6EA —VXEF=M+ja)MHF
VZA + KA = —puJ V?F + k’F = —eM
—jkR —jkR
Azi/f 1—av F=i// M —av
4 R % 4 R
1 ’ lv
Hy=—-VxA Er=—-VxF
i €
EA:—]CUA HF:—ij

1 1
—Jj——V(V-A) —Jj—V(V-F)
wue e
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TABLE 3.2 Dual Quantities for Electric (J) and
Magnetic (M) Current Sources

Electric Sources Magnetic Sources
J#0,M=0) J=0,M#0)
E A HF
H A _EF
J M
A F
€ 2
n €
k k
n 1/n
1/n n

places a voltage (current) meter between any other two nodes (in any other branch),
makes observation of the meter reading, then interchanges the locations of the source
and the meter, the meter reading will be unchanged” [3]. We want now to discuss the
reciprocity theorem as it applies to electromagnetic theory. This is done best by the
use of Maxwell’s equations.

Let us assume that within a linear and isotropic medium, but not necessarily homo-
geneous, there exist two sets of sources J;, M;, and J,, M, which are allowed to
radiate simultaneously or individually inside the same medium at the same frequency
and produce fields E;, H; and E,, H,, respectively. It can be shown [1], [2] that the
sources and fields satisfy

V.- E xH-E xH)=E -J,+H, -M;—-E,-J;—H, - M, (3-60)

which is called the Lorentz Reciprocity Theorem in differential form.
Taking a volume integral of both sides of (3-60) and using the divergence theorem
on the left side, we can write it as

—ﬂ(El X H2 —E2 X H]) . dS/
N

=// (Ei-Jo+H, -M; —E; - J; —H; - My)dv' (3-61)
%

which is designated as the Lorentz Reciprocity Theorem in integral form.
For a source-free (J; =J, = M; =M, = 0) region, (3-60) and (3-61) reduce,
respectively, to

V-(E xH —E; x H)=0 (3-62)

and

ﬂ(El x Hy —E; x Hy) - ds' =0 (3-63)
S
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Equations (3-62) and (3-63) are special cases of the Lorentz Reciprocity Theorem and
must be satisfied in source-free regions.

As an example of where (3-62) and (3-63) may be applied and what they would
represent, consider a section of a waveguide where two different modes exist with
fields E|, H;, and E,, H,. For the expressions of the fields for the two modes to be
valid, they must satisfy (3-62) and/or (3-63).

Another useful form of (3-61) is to consider that the fields (E;, H;, E,, H,) and the
sources (J;, My, Jo, M) are within a medium that is enclosed by a sphere of infinite
radius. Assume that the sources are positioned within a finite region and that the fields
are observed in the far field (ideally at infinity). Then the left side of (3-61) is equal
to zero, or

ﬂ(El xHy,—E;, x H)) - ds' =0 (3-64)
s

which reduces (3-61) to

// E -J,+H, M| —E;-J, —H; - My)dv' =0 (3-65)
14

Equation (3-65) can also be written as

// (E; - Jo—H; - My)dv' = // (Ey - Ji —Hy - M) dv' (3-66)
v v

The reciprocity theorem, as expressed by (3-66), is the most useful form.

A close observation of (3-61) reveals that it does not, in general, represent rela-
tions of power because no conjugates appear. The same is true for the special cases
represented by (3-63) and (3-66). Each of the integrals in (3-66) can be interpreted
as a coupling between a set of fields and a set of sources, which produce another set
of fields. This coupling has been defined as Reaction [4] and each of the integrals in
(3-66) are denoted by

(1,2) = /f (Ey - Jo—H, - M) dv (3-67)
\4

2,1)= /f (Ey - J1 —Hy - My) dv (3-68)
\4

The relation (1, 2) of (3-67) relates the reaction (coupling) of fields (E;, H;), which
are produced by sources J;, M to sources (J,, M), which produce fields E;, Hy; (2, 1)
relates the reaction (coupling) of fields (E,, H,) to sources (J;, M;). For reciprocity to
hold, it requires that the reaction (coupling) of one set of sources with the corresponding
fields of another set of sources must be equal to the reaction (coupling) of the second
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set of sources with the corresponding fields of the first set of sources, and vice versa.
In equation form, it is written as

(1L2)=(2,1) (3-69)

3.8.1 Reciprocity for Two Antennas

There are many applications of the reciprocity theorem. To demonstrate its potential,
an antenna example will be considered. Two antennas, whose input impedances are
Z, and Z,, are separated by a linear and isotropic (but not necessarily homogeneous)
medium, as shown in Figure 3.3. One antenna (#1) is used as a transmitter and the other
(#2) as a receiver. The equivalent network of each antenna is given in Figure 3.4. The
internal impedance of the generator Z, is assumed to be the conjugate of the impedance
of antenna #1 (Z, = Z{ = Ry — jX,) while the load impedance Z; is equal to the
conjugate of the impedance of antenna #2 (Z; = Z; = R, — jX»). These assumptions
are made only for convenience.
The power delivered by the generator to antenna #1 is given by (2-83) or

1 w1 V,Z, Ve |V, |?
Py = —Re[VI{] = =Re = (3-70)
2 2 Zi+Z, ) (Zy + Zy)* 8R,

If the transfer admittance of the combined network consisting of the generator
impedance, antennas, and load impedance is Y, the current through the load is V,Y5,
and the power delivered to the load is

Py = {Re[Zo(V, Vo)) (Ve Ya1)'] = S Ro| V| Yar 3-71)

The ratio of (3-71) to (3-70) is

P
FZ = 4R Ry| Yy |? (3-72)
1

Figure 3.3 Transmitting and receiving antenna systems.

A C

Ze =Ry —jXy "OT
QD Vil Zy =Ry +jX) Zy =R, +jX2 Z; =Ry, —jX»

e ® e
B D

Figure 3.4 Two-antenna system with conjugate loads.
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In a similar manner, we can show that when antenna #2 is transmitting and #1 is
receiving, the power ratio of P;/P, is given by

P
L 4R R Y, (3-73)
o)

Under conditions of reciprocity (Y1, = Y»;), the power delivered in either direction is
the same.

3.8.2 Reciprocity for Antenna Radiation Patterns

The radiation pattern is a very important antenna characteristic. Although it is usually
most convenient and practical to measure the pattern in the receiving mode, it is
identical, because of reciprocity, to that of the transmitting mode.

Reciprocity for antenna patterns is general provided the materials used for the anten-
nas and feeds, and the media of wave propagation are linear. Nonlinear devices, such
as diodes, can make the antenna system nonreciprocal. The antennas can be of any
shape or size, and they do not have to be matched to their corresponding feed lines or
loads provided there is a distinct single propagating mode at each port. The only other
restriction for reciprocity to hold is for the antennas in the transmit and receive modes
to be polarization matched, including the sense of rotation. This is necessary so that
the antennas can transmit and receive the same field components, and thus total power.
If the antenna that is used as a probe to measure the fields radiated by the antenna
under test is not of the same polarization, then in some situations the transmit and
receive patterns can still be the same. For example, if the transmit antenna is circularly
polarized and the probe antenna is linearly polarized, then if the linearly polarized
probe antenna is used twice and it is oriented one time to measure the 6-component
and the other the ¢-component, then the sum of the two components can represent
the pattern of the circularly polarized antenna in either the transmit or receive modes.
During this procedure, the power level and sensitivities must be held constant.

To detail the procedure and foundation of pattern measurements and reciprocity, let
us refer to Figures 3.5(a) and (b). The antenna under test is #1 while the probe antenna
(#2) is oriented to transmit or receive maximum radiation. The voltages and currents
Vi, I; at terminals 1—-1 of antenna #1 and V,, I, at terminals 2—2 of antenna #2 are
related by

Vi=Zuh +Zph

(3-74)
Vo =2Zo11i + Zn s
where
Z1, = self-impedance of antenna #1
Zy = self-impedance of antenna #2

Z12, Z»1 = mutual impedances between antennas #1 and #2

If a current [, is applied at the terminals 1—1 and voltage V, (designated as V,,.)
is measured at the open (I, = 0) terminals of antenna #2, then an equal voltage Vj,.
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Observation Observation
sphere sphere

2 2 .

9 e
1 RT X # 1 R A
i-ci:ié 61,9 & 61,9

- 1 1
Test antenna (#1) Test antenna (#1)
(a) (b)

Figure 3.5 Antenna arrangement for pattern measurements and reciprocity theorem.

will be measured at the open (I; = 0) terminals of antenna #1 provided the current I,
of antenna #2 is equal to ;. In equation form, we can write

V.

Zr = 20c (3-75a)
I L=0
1%

Zin = loc (3-75b)
16 1,=0

If the medium between the two antennas is linear, passive, isotropic, and the waves
monochromatic, then because of reciprocity

V. V
7o) = 20c _ loc =Zn (3-76)
I, L=0 I =0
If in addition I; = I, then
V20c = Vloc (3'77)

The above are valid for any position and any configuration of operation between the
two antennas.

Reciprocity will now be reviewed for two modes of operation. In one mode, antenna
#1 is held stationary while #2 is allowed to move on the surface of a constant radius
sphere, as shown in Figure 3.5(a). In the other mode, antenna #2 is maintained sta-
tionary while #1 pivots about a point, as shown in Figure 3.5(b).

In the mode of Figure 3.5(a), antenna #1 can be used either as a transmitter or
receiver. In the transmitting mode, while antenna #2 is moving on the constant radius
sphere surface, the open terminal voltage V5, is measured. In the receiving mode, the
open terminal voltage Vj,. is recorded. The three-dimensional plots of V,,. and Vi,
as a function of 6 and ¢, have been defined in Section 2.2 as field patterns. Since
the three-dimensional graph of V,,. is identical to that of Vj,. (due to reciprocity),
the transmitting (Va,.) and receiving (Vi,.) field patterns are also equal. The same
conclusion can be arrived at if antenna #2 is allowed to remain stationary while #1
rotates, as shown in Figure 3.5(b).

The conditions of reciprocity hold whether antenna #1 is used as a transmitter and
#2 as a receiver or antenna #2 as a transmitter and #1 as a receiver. In practice, the
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most convenient mode of operation is that of Figure 3.5(b) with the test antenna used
as a receiver. Antenna #2 is usually placed in the far-field of the test antenna (#1), and
vice versa, in order that its radiated fields are plane waves in the vicinity of #1.

The receiving mode of operation of Figure 3.5(b) for the test antenna is most widely
used to measure antenna patterns because the transmitting equipment is, in most cases,
bulky and heavy while the receiver is small and lightweight. In some cases, the receiver
is nothing more than a simple diode detector. The transmitting equipment usually con-
sists of sources and amplifiers. To make precise measurements, especially at microwave
frequencies, it is necessary to have frequency and power stabilities. Therefore, the
equipment must be placed on stable and vibration-free platforms. This can best be
accomplished by allowing the transmitting equipment to be held stationary and the
receiving equipment to rotate.

An excellent manuscript on test procedures for antenna measurements of ampli-
tude, phase, impedance, polarization, gain, directivity, efficiency, and others has been
published by IEEE [5]. A condensed summary of it is found in [6], and a review is
presented in Chapter 17 of this text.
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PROBLEMS
3.1. IfH, = jweV x I, where II, is the electric Hertzian potential, show that
1
(@ VO, +kM, =j—J (b) E.=KkT,+V(V-I,)
we
1
() Me=—j—A
W€
32. IfE, = —jouV x I, where I, is the magnetic Hertzian potential, show that
1
(@ V2, +kH,=j—M (b) H, =K1, + V(V-1,)
o

1
(¢ my=-j—7F
we

3.3. Verify that (3-35) and (3-36) are solutions to (3-34).

3.4. Show that (3-42) is a solution to (3-39) and (3-43) is a solution to (3-31).
3.5.  Verify (3-57) and (3-57a).

3.6. Derive (3-60) and (3-61).
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CHAPTER4
e e

Linear Wire Antennas

4.1 INTRODUCTION

Wire antennas, linear or curved, are some of the oldest, simplest, cheapest, and in
many cases the most versatile for many applications. It should not then come as a
surprise to the reader that we begin our analysis of antennas by considering some of
the oldest, simplest, and most basic configurations. Initially we will try to minimize
the complexity of the antenna structure and geometry to keep the mathematical details
to a minimum.

4.2 INFINITESIMAL DIPOLE

An infinitesimal linear wire (I <« A) is positioned symmetrically at the origin of the
coordinate system and oriented along the z axis, as shown in Figure 4.1(a). Although
infinitesimal dipoles are not very practical, they are used to represent capacitor-plate
(also referred to as top-hat-loaded) antennas. In addition, they are utilized as building
blocks of more complex geometries. The end plates are used to provide capacitive
loading in order to maintain the current on the dipole nearly uniform. Since the end
plates are assumed to be small, their radiation is usually negligible. The wire, in
addition to being very small (I <« 1), is very thin (¢ < A). The spatial variation of the
current is assumed to be constant and given by

I(z') = 4.1, (4-1)

where Iy = constant.

4.2.1 Radiated Fields

To find the fields radiated by the current element, the two-step procedure of Figure 3.1
is used. It will be required to determine first A and F and then find the E and H. The
functional relation between A and the source J is given by (3-49), (3-51), or (3-53).
Similar relations are available for F and M, as given by (3-50), (3-52), and (3-54).

Antenna Theory: Analysis Design, Third Edition, by Constantine A. Balanis
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Since the source only carries an electric current I, I, and the potential function F
are zero. To find A we write
M I ’ !’ eiij I
Ax,y,2) = — | L&', y,2)——dl (4-2)
47'[ c R

where (x, y, z) represent the observation point coordinates, (x’,y’, z’) represent the
coordinates of the source, R is the distance from any point on the source to the
observation point, and path C is along the length of the source. For the problem of
Figure 4.1

L'y, ) =41 (4-3a)

/ !

x' =y =7 =0 (infinitesimal dipole) (4-3b)

|
end-plate [, [
T~

—D |

12 |
Yy T >V

|

I

|

I

12 >

af N

(a) Infinitesimal dipole

(b) Electric field orientation

Figure 4.1 Geometrical arrangement of an infinitesimal dipole and its associated electric-field
components on a spherical surface.
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R=vVE& -2+ -y +Gc-2=Vx2+y*+2
= r = constant (4-3¢c)

dl' = dz’ (4-3d)

so we can write (4-2) as

+/2

I .
A(x,y,2) = ﬁsz?(r)e—/kr/ d7 =

ﬁz ,LLI()l e—jkr
1/2 drrr

(4-4)

The next step of the procedure is to find H, using (3-2a) and then E4 using
(3-15) or (3-10) with J = 0. To do this, it is often much simpler to transform (4-
4) from rectangular to spherical components and then use (3-2a) and (3-15) or (3-10)
in spherical coordinates to find H and E.

The transformation between rectangular and spherical components is given, in matrix
form, by (VII-12a) (see Appendix VII)

A, sinfcos¢ sinfsing cos6 Ay
Ag | = | cosfcos¢p cosfsing —sin6 A, (4-5)
Ay —sing cos ¢ 0 A,

For this problem, A, = A, = 0, so (4-5) using (4-4) reduces to

Inl —jkr
A, = A.cosf = RO 7 osh (4-62)
drr
Il —jkr
Ag=—A.sing = -2 Ging (4-6b)
4y
Ap=0 (4-6¢)

Using the symmetry of the problem (no ¢ variations), (3-2a) can be expanded in
spherical coordinates and written in simplified form as

H=A4 L123 (rAp) o4, 4-7)
=a,— | —(r — -
4 ur [ or ¢ a6
Substituting (4-6a)—(4-6¢) into (4-7) reduces it to
H, = Hy =0 (4-8a)
klyl sinf 1 .
= j— |14+ — e /& 4-8b
0= 4y |: + jkrj| ¢ ( )

The electric field E can now be found using (3-15) or (3-10) with J = 0. That is,

1 1
E=E,=—joA—j—V(V-A) = —V xH (4-9)
WUE Jjwe
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Substituting (4-6a)—(4-6¢) or (4-8a)—(4-8b) into (4-9) reduces it to

£ — Ipl cos O - 1 ik
r=n—— ik (4-10a)
g khlsing [ LT e 1o
= _— _ e -
0= Iy ke (kr)? (4-10b)
Ey=0 (4-10¢)

The E- and H-field components are valid everywhere, except on the source itself,
and they are sketched in Figure 4.1(b) on the surface of a sphere of radius r. It is
a straightforward exercise to verify Equations (4-10a)—(4-10c), and this is left as an
exercise to the reader (Prob. 4.13).

4.2.2 Power Density and Radiation Resistance

The input impedance of an antenna, which consists of real and imaginary parts, was
discussed in Section 2.13. For a lossless antenna, the real part of the input impedance
was designated as radiation resistance. It is through the mechanism of the radiation
resistance that power is transferred from the guided wave to the free-space wave. To
find the input resistance for a lossless antenna, the Poynting vector is formed in terms
of the E- and H-fields radiated by the antenna. By integrating the Poynting vector over
a closed surface (usually a sphere of constant radius), the total power radiated by the
source is found. The real part of it is related to the input resistance.

For the infinitesimal dipole, the complex Poynting vector can be written using
(4-8a)—(4-8b) and (4-10a)—(4-10c) as

W= %(E x H*) = %(ﬁrEr +8yEp) x (ﬁ¢H;)
= L@, EoHy" — 8B, Hy) (b

whose radial W, and transverse W, components are given, respectively, by

2 .2
n | Il | sin” 6@ 1
=1 - j— 4-12
87| [ ey (122
_ k|Iol|> cos @ sin 6 1
Wy = 4-12b
N T (kr)2 (-120)

The complex power moving in the radial direction is obtained by integrating (4-11)—
(4-12b) over a closed sphere of radius r. Thus it can be written as

2 T
P =ﬂw- ds =/ / (&, W, +agW,) - 4,72 sin0 d6 do (4-13)
0 0
S

which reduces to

2 T T
P:/ / W,r?sin0dodp = n=
o Jo 3

Iol

A

2 1
[1 -/ (kr>3] 1D
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The transverse component Wy of the power density does not contribute to the inte-
gral. Thus (4-14) does not represent the total complex power radiated by the antenna.
Since Wy, as given by (4-12b), is purely imaginary, it will not contribute to any real
radiated power. However, it does contribute to the imaginary (reactive) power which
along with the second term of (4-14) can be used to determine the total reactive power
of the antenna. The reactive power density, which is most dominant for small values of
kr, has both radial and transverse components. It merely changes between outward and
inward directions to form a standing wave at a rate of twice per cycle. It also moves in
the transverse direction as suggested by (4-12b).

Equation (4-13), which gives the real and imaginary power that is moving outwardly,

can also be written as
2 | o
k3

P:%//ExH*-dS:n(%)
s

= Praga + jzw(Wm - We) (4‘15)

1ol
)

where
P = power (in radial direction)
P,,q = time-average power radiated

W,, = time-average magnetic energy density (in radial direction)

W, = time-average electric energy density (in radial direction)
2w(W,, — W,) = time-average imaginary (reactive) power (in radial direction)

From (4-14)
T I()l 2
Paa=1(5) |5 (4-16)
nd - - oy | Ll]? 1
2000, =W =0 (3) || o 417)

It is clear from (4-17) that the radial electric energy must be larger than the radial mag-
netic energy. For large values of kr (kr > 1 or r 3> 1), the reactive power diminishes
and vanishes when kr = oo.

Since the antenna radiates its real power through the radiation resistance, for the
infinitesimal dipole it is found by equating (4-16) to

s
P = n (g)

where R, is the radiation resistance. Equation (4-18) reduces to

2\ (1) (1Y

2
1 2
= —|Io| R, (4—18)

1ol
Y
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for a free-space medium (n =~ 120mw). It should be pointed out that the radiation
resistance of (4-19) represents the total radiation resistance since (4-12b) does not
contribute to it.

For a wire antenna to be classified as an infinitesimal dipole, its overall length must
be very small (usually / < A/50).

Find the radiation resistance of an infinitesimal dipole whose overall length is [ = 1/50.
Solution: Using (4-19)

Since the radiation resistance of an infinitesimal dipole is about 0.3 ohms, it will present a
very large mismatch when connected to practical transmission lines, many of which have
characteristic impedances of 50 or 75 ohms. The reflection efficiency (e,) and hence the
overall efficiency (ep) will be very small.

Example 4.1

i\ 1\2
R, = 80%> (X) = 8072 (%> = 0.316 ohms

The reactance of an infinitesimal dipole is capacitive. This can be illustrated by
considering the dipole as a flared open-circuited transmission line, as discussed in
Section 1.4. Since the input impedance of an open-circuited transmission line a distance
1/2 from its open end is given by Z;,, = —jZ.cot (Bl/2), where Z, is its characteristic
impedance, it will always be negative (capacitive) for [ < A.

4.23

Radian Distance and Radian Sphere

The E- and H-fields for the infinitesimal dipole, as represented by (4-8a)—(4-8b) and
(4-10a)—(4-10c), are valid everywhere (except on the source itself). An inspection of
these equations reveals the following:

(a)

(b)

At a distance r = A /2w (or kr = 1), which is referred to as the radian distance,
the magnitude of the first and second terms within the brackets of (4-8b) and
(4-10a) is the same. Also at the radian distance the magnitude of all three terms
within the brackets of (4-10b) is identical; the only term that contributes to the
total field is the second, because the first and third terms cancel each other. This
is illustrated in Figure 4.2.

At distances less than the radian distance r < A/2mw (kr < 1), the magnitude of
the second term within the brackets of (4-8b) and (4-10a) is greater than the
first term and begins to dominate as » < A/2m. For (4-10b) and r < A/2m, the
magnitude of the third term within the brackets is greater than the magnitude of
the first and second terms while the magnitude of the second term is greater than
that of the first one; each of these terms begins to dominate as r << A/2mw. This
is illustrated in Figure 4.2. The region r < A/27 (kr < 1) is referred to as the
near-field region, and the energy in that region is basically imaginary (stored).
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Figure 4.2 Magnitude variation, as a function of the radial distance, of the field terms radiated
by an infinitesimal dipole.

(©)

(d)

At distances greater than the radian distance r > A/27 (kr > 1), the first term
within the brackets of (4-8b) and (4-10a) is greater than the magnitude of
the second term and begins to dominate as r > A/2m (kr > 1). For (4-10b)
and r > A/2m, the first term within the brackets is greater than the magni-
tude of the second and third terms while the magnitude of the second term
is greater than that of the third; each of these terms begins to dominate as
r > A/2m. This is illustrated in Figure 4.2. The region r > A/2x (kr > 1) is
referred to as the intermediate-field region while that for » > 1 /2w (kr > 1)
is referred to as the far-field region, and the energy in that region is basically
real (radiated).

The sphere with radius equal to the radian distance (r = A/2m) is referred as
the radian sphere, and it defines the region within which the reactive power
density is greater than the radiated power density [1]—[3]. For an antenna, the
radian sphere represents the volume occupied mainly by the stored energy of
the antenna’s electric and magnetic fields. Outside the radian sphere the radi-
ated power density is greater than the reactive power density and begins to
dominate as r > A/2m. Therefore the radian sphere can be used as a refer-
ence, and it defines the transition between stored energy pulsating primarily in
the £0 direction [represented by (4-12b)] and energy radiating in the radial
(r) direction [represented by the first term of (4-12a); the second term represents
stored energy pulsating inwardly and outwardly in the radial (r) direction]. Sim-
ilar behavior, where the power density near the antenna is primarily reactive and
far away is primarily real, is exhibited by all antennas, although not exactly at
the radian distance.
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4.2.4 Near-Field (kr « 1) Region

An inspection of (4-8a)—(4-8b) and (4-10a)—(4-10c) reveals that for kr << A or r K
A/2m they can be reduced in much simpler form and can be approximated by

E, ~ —jnM cosf (4-20a)
2mkr3
Ep~ — jnl"le_ﬂ(r sin 6 (4-20D)
4mkr3 kr < 1
Ey=H =Hy =0 (4-20c)
I()le_jkr .
e - sin 6 (4-20d)

The E-field components, E, and Ey, are in time-phase but they are in time-phase
quadrature with the H-field component Hy; therefore there is no time-average power
flow associated with them. This is demonstrated by forming the time-average power
density as

Way = 1Re[E x H*] = IRe[d, EgH*y — 8 E, H* ] 4-21)
which by using (4-20a)—(4-20d) reduces to

2 5in%6

Iol N
= + g
rd Mk

4

1 s 0
Wav = ERC |:—a,] % (4_22)

|Iol|* sin O cos 6
872 rd =0

The condition of kr < 1 can be satisfied at moderate distances away from the antenna
provided that the frequency of operation is very low. Equations (4-20a) and (4-20b)
are similar to those of a static electric dipole and (4-20d) to that of a static current
element. Thus we usually refer to (4-20a)—(4-20d) as the quasistationary fields.

4.2.5 Intermediate-Field (kr > 1) Region

As the values of kr begin to increase and become greater than unity, the terms that
were dominant for kr < 1 become smaller and eventually vanish. For moderate values
of kr the E-field components lose their in-phase condition and approach time-phase
quadrature. Since their magnitude is not the same, in general, they form a rotating
vector whose extremity traces an ellipse. This is analogous to the polarization problem
except that the vector rotates in a plane parallel to the direction of propagation and
is usually referred to as the cross field. At these intermediate values of kr, the Ey
and H, components approach time-phase, which is an indication of the formation of
time-average power flow in the outward (radial) direction (radiation phenomenon).
As the values of kr become moderate (kr > 1), the field expressions can be approx-
imated again but in a different form. In contrast to the region where kr < 1, the first
term within the brackets in (4-8b) and (4-10a) becomes more dominant and the second
term can be neglected. The same is true for (4-10b) where the second and third terms
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become less dominant than the first. Thus we can write for kr > 1

I —jkr
E ~n2% osh (4-23a)
2mr?
klgle= %
Ep=~ jn——sin6 (4-23b)
Tr kr > 1
E¢ = Hr = Hg =0 (4-23C)
klple /"
Hy~ j—2° " in6 (4-23d)
Ay
The total electric field is given by
E=4,E +4E, (4-24)

whose magnitude can be written as
|E|l = VIE,|> + | Eol? (4-25)

4.2.6 Far-Field (kr » 1) Region

Since (4-23a)—(4-23d) are valid only for values of kr > 1 (r > 1), then E, will be
smaller than E, because E, is inversely proportional to r> where Ej is inversely
proportional to r. In a region where kr > 1, (4-23a)—(4-23d) can be simplified and
approximated by

Ey ~ jnM sin (4-262)
dmr
E,~Ey=H =Hy=0¢ kr>1 (4-26b)
L Kol
¢ =S gy 0 (4-26¢)

The ratio of Ey to Hy is equal to

Zy = —2 ~q 4-27)

where )
Z,, = wave impedance

n = intrinsic impedance (377 ~ 120 ohms for free-space)

The E- and H-field components are perpendicular to each other, transverse to the
radial direction of propagation, and the r variations are separable from those of 6 and
¢. The shape of the pattern is not a function of the radial distance r, and the fields
form a Transverse ElectroMagnetic (TEM) wave whose wave impedance is equal
to the intrinsic impedance of the medium. As it will become even more evident in
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later chapters, this relationship is applicable in the far-field region of all antennas of
finite dimensions. Equations (4-26a)—(4-26¢) can also be derived using the procedure
outlined and relationships developed in Section 3.6. This is left as an exercise to the
reader (Prob. 4.15).

Example 4.2

For an infinitesimal dipole determine and interpret the vector effective length [see
Section 2.15, Figure 2.29(a)]. At what incidence angle does the open-circuit maximum
voltage occurs at the output terminals of the dipole if the electric-field intensity of the
incident wave is 10 mV/m? The length of the dipole is 10 cm.

Solution: Using (4-26a) and the effective length as defined by (2-92), we can write that

. k[()leijkr . . . k]()eijkr
Ey = L v sinf = —ay jn

k[oeijkr .2

4r

« (—aylsinh)

A

= —ajn

Therefore, the effective length is
£, = —aylsin0

whose maximum value occurs when 6 = 90°, and it is equal to /. Therefore, to achieve
maximum output the wave must be incident upon the dipole at a normal incidence angle
6 =90°).
The open-circuit maximum voltage is equal to
, . i .
Vaclmax = |El * ee|max = |39 10 x 10 - (—ayl Slne)lmax

=10 x 1073 = 1073 volts

4.2.7 Directivity

The real power P4 radiated by the dipole was found in Section 4.2.2, as given by
(4-16). The same expression can be obtained by first forming the average power density,
using (4-26a)—(4-26¢). That is,

% sin% 6

72

all
i)

k1ol
4r

1 1
W,y = —Re(E x H*) = 4, — |E,|* = (4-28)
2 2n

Integrating (4-28) over a closed sphere of radius r reduces it to (4-16). This is left as
an exercise to the reader (Prob. 4.14).
Associated with the average power density of (4-28) is a radiation intensity U which
is given by
kol \ 2
U=r2Wy=2(Z2) sin?0 = —|Ey(r. 0, p) (4-29)
2 \ 4n 2n
and it conforms with (2-12a). The normalized pattern of (4-29) is shown in Figure 4.3.
The maximum value occurs at & = /2 and it is equal to

kIl \?
Unax = g (ﬁ) (4-30)



INFINITESIMAL DIPOLE 161

Radiation pattern
U=sin?6

Dipole antenna

y
Figure 4.3 Three-dimensional radiation pattern of infinitesimal dipole.
Using (4-16) and (4-30), the directivity reduces to
U, 3
Dy = 4n —=2 = = 4-31)
rad 2
and the maximum effective aperture to
A A2 Do — 322 —
em — A 0= 8 ( - )

The radiation resistance of the dipole can be obtained by the definition of (4-18).
Since the radiated power obtained by integrating (4-28) over a closed sphere is the
same as that of (4-16), the radiation resistance using it will also be the same as obtained
previously and given by (4-19).

Integrating the complex Poynting vector over a closed sphere, as was done in (4-13),
results in the power (real and imaginary) directed in the radial direction. Any trans-
verse components of power density, as given by (4-12b), will not be captured by the
integration even though they are part of the overall power. Because of this limitation,
this method cannot be used to derive the input reactance of the antenna.

The procedure that can be used to derive the far-zone electric and magnetic fields
radiated by an antenna, along with some of the most important parameters/figures of
merit that are used to describe the performance of an antenna, are summarized in
Table 4.1.
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TABLE 4.1 Summary of Procedure to Determine the Far-Field Radiation
Characteristics of an Antenna

1. Specity electric and/or magnetic current densities J, M [physical or equivalent (see
Chapter 3, Figure 3.1)]
2. Determine vector potential components Ag, A4 and/or Fy, Fy4 using (3-46)—(3-54) in far
field
3. Find far-zone E and H radiated fields (Ey, Ey; Hp, Hyp) using (3-58a)—(3-58b)
4. Form either 1
a. Wraa(r, 0, ¢) = Way(r, 0, ¢) = ERe[E x H']

12

1 ~ ~ ~ * A *
ERC [(agEg + (1¢E¢) X (agHe +a¢H¢)]

A TIEP+1EsPT .1
Woaa(r, 6, ¢) arz[% =a,r—2|f(9,¢>)|2

or

b. U@, $) =r* Wea(r,0,¢) = |f(6, )|
5. Determine either

2 T
a Pog = / / Wiaa(r, 0, ¢)r’ sin® do d¢
0 0

or
2 b4
b. Prad=/ / U@, ¢)sin0db deo
o Jo
6. Find directivity using

U@.¢) 4nU®,¢)

D@, ¢) =
UO Prad
U@, P)lmax  4tU (0, @)lmax
Dy = Dnax = D(@, ¢)|max = ( ¢)| = = T ( ¢)| ‘
Up Prag
7. Form normalized power amplitude pattern:
U@®,¢)
P60, ¢) =
Umax
8. Determine radiation and input resistance:
_ 2Prg . R,

R = Rpp = ————
r 2 ] m
[ o sin? (ﬂ)
2

9. Determine maximum effective area

4.3 SMALL DIPOLE

The creation of the current distribution on a thin wire was discussed in Section 1.4, and
it was illustrated with some examples in Figure 1.16. The radiation properties of an
infinitesimal dipole, which is usually taken to have a length / < A /50, were discussed
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in the previous section. Its current distribution was assumed to be constant. Although
a constant current distribution is not realizable (other than top-hat-loaded elements),
it is a mathematical quantity that is used to represent actual current distributions of
antennas that have been incremented into many small lengths.

A better approximation of the current distribution of wire antennas, whose lengths
are usually A/50 < < A/10, is the triangular variation of Figure 1.16(a). The sinu-
soidal variations of Figures 1.16(b)—(c) are more accurate representations of the current
distribution of any length wire antenna.

The most convenient geometrical arrangement for the analysis of a dipole is usually
to have it positioned symmetrically about the origin with its length directed along the
z-axis, as shown in Figure 4.4(a). This is not necessary, but it is usually the most
convenient. The current distribution of a small dipole (A/50 <[ < 1/10) is shown in

A P(r. 0,¢)

(a) Dipole and geometry

iff/

Figure 4.4 Geometrical arrangement of dipole and current distribution.

(b) Current distribution
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Figure 4.4(b), and it is given by

A 2 / !
aZIO 1—72 s 0<z 51/2

L(x',y,2) = ) 5 (4-33)
a.l l+72’ , —1/2<7 <0

where I, = constant.
Following the procedure established in the previous section, the vector potential of
(4-2) can be written using (4-33) as

0 ) o—JkR
Alx, y,2) = % [51/1/2 Io (1 + 75) ——dz

12 2 e—JkR
a, IL|1-=7 d7
+a~/0 0( ZZ) R Z]

Because the overall length of the dipole is very small (usually / < A/10), the values of
R for different values of z’ along the length of the wire (—[/2 < 7' < [/2) are not much
different from r. Thus R can be approximated by R =~ r throughout the integration
path. The maximum phase error in (4-34) by allowing R =r for /50 <1 < A/10,
will be kl/2 = /10 rad = 18° for I = A/10. Smaller values will occur for the other
lengths. As it will be shown in the next section, this amount of phase error is usually
considered negligible and has very little effect on the overall radiation characteristics.
Performing the integration, (4-34) reduces to

(4-34)

1 [ wlple=7*

A=24A, = ﬁzi |:MZT:| (4-35)
which is one-half of that obtained in the previous section for the infinitesimal dipole
and given by (4-4).

The potential function given by (4-35) becomes a more accurate approximation as
kr — oo. This is also the region of most practical interest, and it has been designated
as the far-field region. Since the potential function for the triangular distribution is
one-half of the corresponding one for the constant (uniform) current distribution, the
corresponding fields of the former are one-half of the latter. Thus we can write the E-
and H-fields radiated by a small dipole as

kIgle 7k -
Ey ~ jnio ¢ sin 6 (4-36a)
8nr
E,~Ey=H =Hy =0 kr > 1 (4-36b)
H .klole_jkr o
~ j———sin
o =J Sr (4-36¢)

with the wave impedance equal, as before, to (4-27).
Since the directivity of an antenna is controlled by the relative shape of the field
or power pattern, the directivity, and maximum effective area of this antenna are the
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same as the ones with the constant current distribution given by (4-31) and (4-32),
respectively.

The radiation resistance of the antenna is strongly dependent upon the current distri-
bution. Using the procedure established for the infinitesimal dipole, it can be shown that
for the small dipole its radiated power is one-fourth (}1) of (4-18). Thus the radiation
resistance reduces to

2Prd (1Y
R, = AL = 207 (X) (4-37)

which is also one-fourth (le) of that obtained for the infinitesimal dipole as given by
(4-19). Their relative patterns (shapes) are the same and are shown in Figure 4.3.

4.4 REGION SEPARATION

Before we attempt to solve for the fields radiated by a finite dipole of any length, it
would be very desirable to discuss the separation of the space surrounding an antenna
into three regions; namely, the reactive near-field, radiating near-field (Fresnel) and
the far-field (Fraunhofer) which were introduced briefly in Section 2.2.4. This is nec-
essary because for a dipole antenna of any length and any current distribution, it will
become increasingly difficult to solve for the fields everywhere. Approximations can
be made, especially for the far-field (Fraunhofer) region, which is usually the one of
most practical interest, to simplify the formulation to yield closed form solutions. The
same approximations used to simplify the formulation of the fields radiated by a finite
dipole are also used to formulate the fields radiated by most practical antennas. So it
will be very important to introduce them properly and understand their implications
upon the solution.

The difficulties in obtaining closed form solutions that are valid everywhere for any
practical antenna stem from the inability to perform the integration of

w e~ kR
Ax,y,2) = — / LGy, ) ——dl (4-38)
4 C R
where
R=V(x—x)+ -y’ +@—2) (4-38)

For a finite dipole with sinusoidal current distribution, the integral of (4-38) can be
reduced to a closed form that is valid everywhere! This will be shown in Chapter 8.
The length R is defined as the distance from any point on the source to the observation
point. The integral of (4-38) was used to solve for the fields of infinitesimal and small
dipoles in Sections 4.1 and 4.2. However in the first case (infinitesimal dipole) R = r
and in the second case (small dipole) R was approximated by r(R =~ r) because the
length of the dipole was restricted to be [ < A/10. The major simplification of (4-38)
will be in the approximation of R.

A very thin dipole of finite length / is symmetrically positioned about the origin
with its length directed along the z-axis, as shown in Figure 4.5(a). Because the wire
is assumed to be very thin (x’ =y’ = 0), we can write (4-38) as

R=y(x—xV+G-yP+Gc-2P=y>+y + (@ -2) (4-39)
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P(r,0,9)

(b) Geometrical arrangement for far-field approximations

Figure 4.5 Finite dipole geometry and far-field approximations.

which when expanded can be written as

R=V&2+y2+22) 4 (=227 + 22) = /r?2 + (—=2rz cos 6 + z?) (4-40)

where

rP=x’4+y 427 (4-40a)
z=rcosf (4-40b)

Using the binomial expansion, we can write (4-40) in a series as

, 1 Z/Z .2 1 2/3 )
R=r—7cosf+—(—sin?0 ) + — (= cos@sin?@ ) +--- (4-41)
r\ 2 r2\ 2

whose higher order terms become less significant provided r > 7'
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4.4.1 Far-Field (Fraunhofer) Region

The most convenient simplification of (4-41), other than R ~ r, will be to approximate
it by its first two terms, or
R>~r—z7cosh (4-42)

The most significant neglected term of (4-41) is the third whose maximum value is

1 Z/Z ) Z/Z
— | —sin“ 0 = — when 6 = /2 (4-43)
r ( 2 )max r

When (4-43) attains its maximum value, the fourth term of (4-41) vanishes because
6 = /2. It can be shown that the higher order terms not shown in (4-41) also vanish.
Therefore approximating (4-41) by (4-42) introduces a maximum error given by (4-43).

It has been shown by many investigators through numerous examples that for most
practical antennas, with overall lengths greater than a wavelength (I > A), a maximum
total phase error of 7 /8 rad (22.5°) is not very detrimental in the analytical formula-
tions. Using that as a criterion we can write, using (4-43), that the maximum phase
error should always be

k N2
(@) < s (4-44)
2r 8
which for —1/2 < 7 <1/2 reduces to
lZ
r>2 (x) (4-45)

Equation (4-45) simply states that to maintain the maximum phase error of an
antenna equal to or less than /8 rad (22.5°), the observation distance r must equal or
be greater than 2/%/A where [ is the largest* dimension of the antenna structure. The
usual simplification for the far-field region is to approximate the R in the exponential
(e~ 7*RY) of (4-38) by (4-42) and the R in the denominator of (4-38) by R ~ r. These
simplifications are designated as the far-field approximations and are usually denoted
in the literature as

Far-field Approximations

R>~r—7 cosb for phase terms
(4-46)
R~r for amplitude terms

provided r satisfies (4-45).
It may be advisable to illustrate the approximation (4-46) geometrically. For R >~
r — 7' cos @, where 6 is the angle measured from the z-axis, the radial vectors R and
r must be parallel to each other, as shown in Figure 4.5(b). For any other antenna
whose maximum dimension is D, the approximation of (4-46) is valid provided the
observations are made at a distance
D2
r > 27 (4-47)

For an aperture antenna the maximum dimension is taken to be its diagonal.

*Provided the overall length (/) of the antenna is large compared to the wavelength [see IEEE Standard
Definitions of Terms for Antennas, IEEE Std (145-1983)].
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For most practical antennas, whose overall length is large compared to the wave-
length, these are adequate approximations which have been shown by many investi-
gators through numerous examples to give valid results in pattern predictions. Some
discrepancies are evident in regions of low intensity (usually below —25 dB). This is
illustrated in Figure 2.9 where the patterns of a paraboloidal antenna for R = oo and
R = 2D?/» differ at levels below —25 dB. Allowing R to have a value of R = 4D?/A
gives better results.

It would seem that the approximation of R in (4-46) for the amplitude is more
severe than that for the phase. However a close observation reveals this is not the case.
Since the observations are made at a distance where r is very large, any small error
in the approximation of the denominator (amplitude) will not make much difference
in the answer. However, because of the periodic nature of the phase (repeats every
27 rad), it can be a major fraction of a period. The best way to illustrate it will be to
consider an example.

Example 4.3

For an antenna with an overall length / = 5, the observations are made at r = 60A. Find
the errors in phase and amplitude using (4-46).
Solution: For & =90°, z/ = 2.5A, and r = 60A, (4-40) reduces to

R; = 1/ (60)? + (2.5)> = 60.0522

and (4-46) to
R2 =r =60\

Therefore the phase difference is
2 °
Ap =kAR = T(Rl — Ry) =27(0.052) = 0.327 rad = 18.74

which is an appreciable fraction (~ %) of a full period (360°).
The difference of the inverse values of R is

R, R A

11 1/1 1\ 144x107°
60 60.052) A

which should always be a very small value in amplitude.

4.4.2 Radiating Near-Field (Fresnel) Region

If the observation point is chosen to be smaller than r = 22 /A, the maximum phase
error by the approximation of (4-46) is greater than /8 rad (22.5°) which may be
undesirable in many applications. If it is necessary to choose observation distances
smaller than (4-45), another term (the third) in the series solution of (4-41) must be
retained to maintain a maximum phase error of 7r/8 rad (22.5°). Doing this, the infinite
series of (4-41) can be approximated by

1 Z/Z
R=>~r—7cosf + - (7 sin29> (4-48)
r
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The most significant term that we are neglecting from the infinite series of (4-41) is
the fourth. To find the maximum phase error introduced by the omission of the next
most significant term, the angle 6 at which this occurs must be found. To do this,
the neglected term is differentiated with respect to 6 and the result is set equal to
zero. Thus

0 1 2/3 .2 Z/3 . .2 2
2012\ 7 cosfsin“ O )| = 27 sinf[—sin“0 4+ 2cos“ 0] =0 (4-49)
r r

The angle & = 0 is not chosen as a solution because for that value the fourth term is
equal to zero. In other words, & = 0 gives the minimum error. The maximum error
occurs when the second term of (4-49) vanishes; that is when

[—sin? 6 + 2cos? Oly—g, = 0 (4-50)

or
0, = tan~ ' (£/2) (4-50a)

If the maximum phase error is allowed to be equal or less than 7 /8 rad, the distance
r at which this occurs can be found from

P /1 2 B
1,:1/2 N 1_2 (_> <_) B 5 (_2> S z (4_51)
s A 823/ \3 124/3 \Ar 8

2> 2 (ﬁ) = 0.385 (5) (4-52)
T 3/3 \A A

r>0.6213/x (4-52a)

3

72 cos sin” 0
r

which reduces to

or

A value of r greater than that of (4-52a) will lead to an error less than /8 rad (22.5°).
Thus the region where the first three terms of (4-41) are significant, and the omission
of the fourth introduces a maximum phase error of 7/8 rad (22.5°), is defined by

22 /% > r > 0.62/13/x (4-53)

where [ is the length of the antenna. This region is designated as radiating near-
field because the radiating power density is greater than the reactive power density
and the field pattern (its shape) is a function of the radial distance r. This region is
also called the Fresnel region because the field expressions in this region reduce to
Fresnel integrals.

The discussion has centered around the finite length antenna of length [ with the
observation considered to be a point source. If the antenna is not a line source, [ in
(4-53) must represent the largest dimension of the antenna (which for an aperture is
the diagonal). Also if the transmitting antenna has maximum length I, and the receiving
antenna has maximum length [,, then the sum of I, and [, must be used in place of |
in (4-53).
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The boundaries for separating the far-field (Fraunhofer), the radiating near-field
(Fresnel), and the reactive near-field regions are not very rigid. Other criteria have
also been established [4] but the ones introduced here are the most “popular.” Also
the fields, as the boundaries from one region to the other are crossed, do not change
abruptly but undergo a very gradual transition.

4.4.3 Reactive Near-Field Region

If the distance of observation is smaller than the inner boundary of the Fresnel region,
this region is usually designated as reactive near-field with inner and outer boundaries
defined by

0.62y/3/% > r >0 (4-54)

where [ is the length of the antenna. In this region the reactive power density predom-
inates, as was demonstrated in Section 4.1 for the infinitesimal dipole.

In summary, the space surrounding an antenna is divided into three regions whose
boundaries are determined by

reactive near-field [0.62\/D3/A > r > 0] (4-55a)
radiating near-field (Fresnel) [2D?/A > r > 0.62,/D3/A] (4-55b)
far-field (Fraunhofer) [oo > r > 2D?/A] (4-55¢)

where D is the largest dimension of the antenna (D = [ for a wire antenna).

4.5 FINITE LENGTH DIPOLE

The techniques that were developed previously can also be used to analyze the radiation
characteristics of a linear dipole of any length. To reduce the mathematical complexi-
ties, it will be assumed in this chapter that the dipole has a negligible diameter (ideally
zero). This is a good approximation provided the diameter is considerably smaller than
the operating wavelength. Finite radii dipoles will be analyzed in Chapters 8 and 9.

4.5.1 Current Distribution

For a very thin dipole (ideally zero diameter), the current distribution can be written,

to a good approximation, as
AT I,
a,l sin [k E_Z , 0<z7 <1/2

L(x'=0,y'=0,2) = } (4-56)
a.l sin|:k (E +Z/):|, -1/2<7 <0
This distribution assumes that the antenna is center-fed and the current vanishes at

the end points (7' = £1/2). Experimentally it has been verified that the current in a
center-fed wire antenna has sinusoidal form with nulls at the end points. For [ = A /2
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and /2 < [ < A the current distribution of (4-56) is shown plotted in Figures 1.16(b)
and 1.12(c), respectively. The geometry of the antenna is that shown in Figure 4.5.

4.5.2 Radiated Fields: Element Factor, Space Factor, and Pattern
Multiplication

For the current distribution of (4-56) it will be shown in Chapter 8 that closed form
expressions for the E- and H-fields can be obtained which are valid in all regions
(any observation point except on the source itself). In general, however, this is not
the case. Usually we are limited to the far-field region, because of the mathematical
complications provided in the integration of the vector potential A of (4-2). Since closed
form solutions, which are valid everywhere, cannot be obtained for many antennas, the
observations will be restricted to the far-field region. This will be done first in order to
illustrate the procedure. In some cases, even in that region it may become impossible
to obtain closed form solutions.

The finite dipole antenna of Figure 4.5 is subdivided into a number of infinitesimal
dipoles of length Az’. As the number of subdivisions is increased, each infinitesimal
dipole approaches a length dz’. For an infinitesimal dipole of length dz’ positioned
along the z-axis at 7/, the electric and magnetic field components in the far field are
given, using (4-26a)—(4-26c), as

kl(x',y', 7))e kR
n

dEg ~ j R sin@ dz’ (4-57a)

dE, ~ dEy = dH, = dHy = 0 (4-57b)
kI /’ /’ N ,—JjkR

dHy ~ j XY e o dy (4-57¢)

47 R

where R is given by (4-39) or (4-40).
Using the far-field approximations given by (4-46), (4-57a) can be written as

. kIe(x/5 y/7 Z/)e_jkr
n

dEy ~ j sin e tika cost gt (4-58)

dmr

Summing the contributions from all the infinitesimal elements, the summation reduces,
in the limit, to an integration. Thus

+1/2 ke~ ik +1/2 .
Eq = / dEy = jn sin ¢ [ f L(x',y', 2)e/ e dz’] (4-58a)
—1/2 4r —1)2

The factor outside the brackets is designated as the element factor and that within
the brackets as the space factor. For this antenna, the element factor is equal to the
field of a unit length infinitesimal dipole located at a reference point (the origin). In
general, the element factor depends on the type of current and its direction of flow
while the space factor is a function of the current distribution along the source.
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The total field of the antenna is equal to the product of the element and space factors.
This is referred to as pattern multiplication for continuously distributed sources (see
also Chapter 7), and it can be written as

total field = (element factor) x (space factor) (4-59)

The pattern multiplication for continuous sources is analogous to the pattern multipli-
cation of (6-5) for discrete-element antennas (arrays).
For the current distribution of (4-56), (4-58a) can be written as

klge /% 0 i -
Ey >~ jn 0¢ sin @ {/ sin |:k <_ 4 Z/>j| e+jkz cosf d7
drrr 12 )

+1/2 l o
+ / sin [k (E — z)} gtike cost dz’} (4-60)
0

Each one of the integrals in (4-60) can be integrated using

oax

/e‘” sin(Bx + y)dx = %[a sin(Bx + y) — Bcos(Bx + )] (4-61)
a*+ B
where
o = =xjkcosf (4-61a)
B =tk (4-61b)
y = k2 (4-61c)

After some mathematical manipulations, (4-60) takes the form of

kl P kl
Lpe= ik cos ( - cos cos | 5

2nr sin§

Eg >~ jn

(4-622)

In a similar manner, or by using the established relationship between the Ey and H,
in the far field as given by (3-58b) or (4-27), the total H, component can be written as

kl P kl
E, Joe cos 5 cos cos 5
H¢ >~ —

o~ 4-62b
n J 2mr sin @ ( )
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4.5.3 Power Density, Radiation Intensity, and Radiation Resistance

For the dipole, the average Poynting vector can be written as

1 1, R 1 N . E}
Wav = ERC[E X H*] = ERe[agEg X 3¢H¢] = ERC [agEg X a¢79:|

cos K cosf cos K ’
R A 1 T 2 2
Wa =4, W,y =8, —|Eg|" =4

= 4-63
2n ¢ " 822 sinf ( )

and the radiation intensity as

kl : ki 1?
COS | — COS — COS | —
U=r*w, —n|1"|2 2 2
— =

8n2 sin 6

(4-64)

The normalized (to 0 dB) elevation power patterns, as given by (4-64) for [ =
AJ4, A/2,31/4, and A are shown plotted in Figure 4.6. The current distribution of each
is given by (4-56). The power patterns for an infinitesimal dipole [ < A (U ~ sin” 6)
is also included for comparison. As the length of the antenna increases, the beam
becomes narrower. Because of that, the directivity should also increase with length. It
is found that the 3-dB beamwidth of each is equal to

<A 3-dB beamwidth = 90°

I=)1/4 3-dB beamwidth = 87°

[=A1/2 3-dB beamwidth = 78° (4-65)
l=3)1/4 3-dB beamwidth = 64°

[=A 3-dB beamwidth = 47.8°

As the length of the dipole increases beyond one wavelength (I > A), the number of
lobes begin to increase. The normalized power pattern for a dipole with [ = 1.254 is
shown in Figure 4.7. In Figure 4.7(a) the three-dimensional pattern is illustrated using
the software from [5], while in Figure 4.7(b) the two-dimensional (elevation pattern)
is depicted. For the three-dimensional illustration, a 90° angular section of the pattern
has been omitted to illustrate the elevation plane directional pattern variations. The
current distribution for the dipoles with [ = A/4,1/2,A,3A/2, and 2A, as given by
(4-56), is shown in Figure 4.8.

To find the total power radiated, the average Poynting vector of (4-63) is integrated
over a sphere of radius r. Thus

2 b4
Prog = ﬂ W,y - ds = / / 4, W, - 8,77 sin0do d¢
0 0
S

27 T
= / / Wayr?sinf d6 d¢ (4-66)
0 0
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1
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(dB down)
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————— 1= 1/50 1= M50 3-dB beamwidth = 90°
— 1 =2\4 1= M4 3-dB beamwidth = 87°
I=2)\2 [=M2 3-dB beamwidth = 78°
~ 1=3)\/4 1=3)1/4 3-dB beamwidth = 64°
.............. 1= =X 3-dB beamwidth = 47.8°

90°

Figure 4.6 Elevation plane amplitude patterns for a thin dipole with sinusoidal current distri-

bution (I = 1/50, /4, ./2,3x/4, X).

Using (4-63), we can write (4-66) as

2 T
Prag = / / War?sin6 do do
o Jo

COS | — COoS — COS | —
I 2 b4
. 77| ol / 2 2 20
0

g sin 6

(4-67)
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Figure 4.8 Current distributions along the length of a linear wire antenna.

After some extensive mathematical manipulations, it can be shown that (4-67)
reduces to

2
Prad = n%{c +In(kl) — C; (kD) + L sin(kDLS; (k) — 28; (kD)1

+ Leos(kD)[C + In(kl/2) + C;(2kl) — 2C; (kD)]) (4-68)

where C = 0.5772 (Euler’s constant) and C;(x) and S;(x) are the cosine and sine
integrals (see Appendix III) given by

Ci(x) = — f Coysy dy = / Coysy dy (4-68a)
X o0

S;(x) = / Y dy (4-68b)
0 y
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The derivation of (4-68) from (4-67) is assigned as a problem at the end of the chapter
(Prob. 4.21). C;(x) is related to Cy, (x) by

Cin(x) = In(yx) = Ci(x) = In(y) + In(x) — Ci(x)
= 0.5772 + In(x) — C; (x) (4-69)

*/1—cosy
Cin(x) =/ <7) dy (4-69a)
0 y

C;(x), S;(x) and Cj,(x) are tabulated in Appendix III.
The radiation resistance can be obtained using (4-18) and (4-68) and can be
written as

where

_ 2Prad
e

= 1 (C 4 (ki) — Ci (kD)
2

+ L sin(kl) x [S;(2kl) — 28; (kD)] (4-70)

+ Lcos(kl) x [C + In(kl/2) + C;(2kl) — 2C; (kI)]}

Shown in Figure 4.9 is a plot of R, as a function of / (in wavelengths) when the
antenna is radiating into free-space (n ~ 120x).

The imaginary part of the impedance cannot be derived using the same method as
the real part because, as was explained in Section 4.2.2, the integration over a closed
sphere in (4-13) does not capture the imaginary power contributed by the transverse
component Wy of the power density. Therefore, the EMF method is used in Chapter 8 as
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Figure 4.9 Radiation resistance, input resistance and directivity of a thin dipole with sinusoidal
current distribution.
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an alternative approach. Using the EMF method, the imaginary part of the impedance,
relative to the current maximum, is given by (8-60b) or

-

X
" Ax

{ZSI- (kl) + cos(kD)[2S; (kl) — S; (2kD)]

. 2ka®
—sin(kl) | 2C;(kl) — C; (2kl) — C; o (4-70a)
An approximate form of (4-60b) for small dipoles is given by (8-62).

4.5.4 Directivity

As was illustrated in Figure 4.6, the radiation pattern of a dipole becomes more direc-
tional as its length increases. When the overall length is greater than one wavelength,
the number of lobes increases and the antenna loses its directional properties. The
parameter that is used as a “figure of merit” for the directional properties of the
antenna is the directivity which was defined in Section 2.6.

The directivity was defined mathematically by (2-22), or

F (0, ¢)max
Dy =47 ——— 4-71)
/ / F@,¢)sinf0dodo
0o Jo
where F (6, ¢) is related to the radiation intensity U by (2-19), or
U = ByF(, ¢) 4-72)
From (4-64), the dipole antenna of length / has
ki kI 7*
cos 5 cosf ) — cos >
FO.¢)=F(©) = - (4-73)
sin 6
and 5
By = Ul (4-73a)
8m?
Because the pattern is not a function of ¢, (4-71) reduces to
2F (6
Dy — — 2Ol W
f F(0)sin0 do
0
Equation (4-74) can be written, using (4-67), (4-68), and (4-73), as
2F (6
Dy = 2 Olnn @79)

Q
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where

Q = {C + In(kl) — Ci(kl) + 1 sin(kD)[S; (2kl) — 28; (kD)]
+ L cos(kD)[C + In(kl/2) + C;(2kl) — 2C; (kD)]} (4-75a)

The maximum value of F(6) varies and depends upon the length of the dipole.

Values of the directivity, as given by (4-75) and (4-75a), have been obtained for
0 <! <3) and are shown plotted in Figure 4.9. The corresponding values of the
maximum effective aperture are related to the directivity by

)\‘2
A = 4_D0 (4-76)
T

4.5.5 Input Resistance

In Section 2.13 the input impedance was defined as “the ratio of the voltage to current
at a pair of terminals or the ratio of the appropriate components of the electric to
magnetic fields at a point.” The real part of the input impedance was defined as the
input resistance which for a lossless antenna reduces to the radiation resistance, a result
of the radiation of real power.

In Section 4.2.2, the radiation resistance of an infinitesimal dipole was derived
using the definition of (4-18). The radiation resistance of a dipole of length / with
sinusoidal current distribution, of the form given by (4-56), is expressed by (4-70).
By this definition, the radiation resistance is referred to the maximum current which
for some lengths (I = A/4,3A/4, A, etc.) does not occur at the input terminals of the
antenna (see Figure 4.8). To refer the radiation resistance to the input terminals of the
antenna, the antenna itself is first assumed to be lossless (R, = 0). Then the power at
the input terminals is equated to the power at the current maximum.

Referring to Figure 4.10, we can write

| 1in|* [l
Rin = —Rr (4'77)
2 2
or
2
Iy
R, = |:—] R, (4-77a)
Iin
where

R;, = radiation resistance at input (feed) terminals

R, = radiation resistance at current maximum Eq. (4-70)
Iy = current maximum

I;,, = current at input terminals

For a dipole of length [, the current at the input terminals (/;,) is related to the
current maximum (/) referring to Figure 4.10, by

. (kI
I;, = Iysin (E) (4-78)
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12

Figure 4.10 Current distribution of a linear wire antenna when current maximum does not
occur at the input terminals.

Thus the input radiation resistance of (4-77a) can be written as

R,

o (2) 79
2

Rin =

Values of R;,, for 0 <[ < 3A are shown in Figure 4.9.

To compute the radiation resistance (in ohms), directivity (dimensionless and in dB),
and input resistance (in ohms) for a dipole of length /, a MATLAB and FORTRAN
computer program has been developed. The program is based on the definitions of
each as given by (4-70), (4-71), and (4-79). The radiated power P,q is computed by
numerically integrating (over a closed sphere) the radiation intensity of (4-72)—(4-73a).
The program, both in MATLAB and FORTRAN, is included in the computer disc made
available with the book. The length of the dipole (in wavelengths) must be inserted as
an input.

When the overall length of the antenna is a multiple of A (ie., Il =ni,n=
1,2,3,...), it is apparent from (4-56) and from Figure 4.8 that /;, = 0. That is,

l
Iin = IO sin |:k (E + Z/):|

which indicates that the input resistance at the input terminals, as given by (4-77a) or
(4-79) is infinite. In practice this is not the case because the current distribution does
not follow an exact sinusoidal distribution, especially at the feed point. It has, however,
very high values. Two of the primary factors which contribute to the nonsinusoidal

=0 (4-80)

/=0
I=ni,n=0,12,...
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current distribution on an actual wire antenna are the nonzero radius of the wire and
finite gap spacing at the terminals.

The radiation resistance and input resistance, as predicted, respectively, by (4-70)
and (4-79), are based on the ideal current distribution of (4-56) and do not account for
the finite radius of the wire or the gap spacing at the feed. Although the radius of the
wire does not strongly influence the resistances, the gap spacing at the feed does play
a significant role especially when the current at and near the feed point is small.

4.5.6 Finite Feed Gap

To analytically account for a nonzero current at the feed point for antennas with a finite
gap at the terminals, Schelkunoff and Friis [6] have changed the current of (4-56) by
including a quadrature term in the distribution. The additional term is inserted to take
into account the effects of radiation on the antenna current distribution. In other words,
once the antenna is excited by the “ideal” current distribution of (4-56), electric and
magnetic fields are generated which in turn disturb the “ideal” current distribution.
This reaction is included by modifying (4-56) to

l k
a, {Ig sin [k (E — Z/):| + jply |:cos(kz/) — cos (El)}} ,
0<z <l)2
LGy, 2) = l =a=lr (4-81)
a, {Io sin [k <§ + z’>i| + jpl |:cos(kz’) — COoS (§l>i|} ,
—1/2<7 <0

where p is a coefficient that is dependent upon the overall length of the antenna and
the gap spacing at the terminals. The values of p become smaller as the radius of the
wire and the gap decrease.

When [ = A/2,

L(x',y', 2y =4a.I(1 + jp)coskz’) 0<|Z| <r/4 (4-82)
and for [ = A

L.y, o) = { a lo{sin(kz’) + jpll + cos(kz")]} 0<z <1/2 (4-83)
el a.Io{—sin(kz) + jp[l +cos(kz)]} —r/2<27 <0

Thus for [ = XA /2 the shape of the current is not changed while for [ = A it is modified
by the second term which is more dominant for small values of z'.

The variations of the current distribution and impedances, especially of wire-type
antennas, as a function of the radius of the wire and feed gap spacing can be easily
taken into account by using advanced computational methods and numerical techniques,
especially Integral Equations and Moment Method [7]-[12], which are introduced in
Chapter 8.

To illustrate the point, the current distribution of an [ = A/2 and / = A dipole has
been computed using an integral equation formulation with a moment method numer-
ical solution, and it is shown in Figure 8.13(b) where it is compared with the ideal
distribution of (4-56) and other available data. For the moment method solution, a gap
at the feed has been inserted. As expected and illustrated in Figure 8.13(b), the current
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distribution for the [ = 1 /2 dipole based on (4-56) is not that different from that based
on the moment method. This is also illustrated by (4-82). Therefore the input resistance
based on these two methods will not be that different. However, for the [ = X dipole,
the current distribution based on (4-56) is quite different, especially at and near the
feed point, compared to that based on the moment method, as shown in Figure 8.13(b).
This is expected since the current distribution based on the ideal current distribution is
zero at the feed point; for practical antennas it is very small. Therefore the gap at the
feed plays an important role on the current distribution at and near the feed point. In
turn, the values of the input resistance based on the two methods will be quite different,
since there is a significant difference in the current between the two methods. This is
discussed further in Chapter 8.

4.6 HALF-WAVELENGTH DIPOLE

One of the most commonly used antennas is the half-wavelength (I = 1/2) dipole.
Because its radiation resistance is 73 ohms, which is very near the 50-ohm or 75-ohm
characteristic impedances of some transmission lines, its matching to the line is sim-
plified especially at resonance. Because of its wide acceptance in practice, we will
examine in a little more detail its radiation characteristics.

The electric and magnetic field components of a half-wavelength dipole can be
obtained from (4-62a) and (4-62b) by letting / = A /2. Doing this, they reduce to

b4
_ IpeJkr | €08 (— cos 9)
Ep > jn 2

27 sin @ (4-84)

jloe—_/kr COoS (5 CcOoS )

[

Hy (4-85)

2nr sin 6

In turn, the time-average power density and radiation intensity can be written, respec-

tively, as
2

b4
|10|2 cos <E cos@) N |10|2

W,, = ~ in® 6 4-86
w 8m2r2 siné 8m2r2 s ( )
and
- 2
cos | —cos@ 2
_ o _ WP (2 ) P
U=r"Wy=n o2 i d o~ nm sin” 6 (4-87)

whose two-dimensional pattern is shown plotted in Figure 4.6 while the three-
dimensional pattern is depicted in Figure 4.11. For the three-dimensional pattern of
Figure 4.11, a 90° angular sector has been removed to illustrate the figure-eight
elevation plane pattern variations.
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Figure 4.11 Three-dimensional pattern of a A/2 dipole. (source: C. A. Balanis, “Antenna
Theory: A Review” Proc. IEEE, Vol. 80, No 1. Jan. 1992. © 1992 IEEE).

The total power radiated can be obtained as a special case of (4-67), or

Praa =1 do (4-88)

T
|IO|2 /7{ 0082 (E Ccos 9)
0

4 sin @

which when integrated reduces, as a special case of (4-68), to

I 2 2 1— 1 2
P = 20 / ( 8y ) dy =" ¢ ) (4-89)
8t Jo y 8

By the definition of Cj,(x), as given by (4-69), C;,(27) is equal to
Cin2m) =0.5772 +In2) — C; 2mw) = 0.5772 + 1.838 — (—0.02) >~ 2.435 (4-90)

where C;(2m) is obtained from the tables in Appendix III.
Using (4-87), (4-89), and (4-90), the maximum directivity of the half-wavelength
dipole reduces to

Unmax Ulg=r 4
Dy =4m T — 4y lo=r2 = =
Prad Prad Cin (27[) 2.435

~ 1.643 (4-91)

The corresponding maximum effective area is equal to

22 A2
Aem = — Dy = —(1.643) ~ 0.13)2 (4-92)
4 4
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and the radiation resistance, for a free-space medium (n ~ 120m), is given by

_ 2Prag _ i
"l 4n

Cin(27) = 30(2.435) ~ 73 (4-93)

The radiation resistance of (4-93) is also the radiation resistance at the input termi-
nals (input resistance) since the current maximum for a dipole of [ = A /2 occurs at the
input terminals (see Figure 4.8). As it will be shown in Chapter 8, the imaginary part
(reactance) associated with the input impedance of a dipole is a function of its length
(for ! = 1/2,itis equal to j42.5). Thus the total input impedance for / = A/2 is equal to

Ziy =734 j42.5 (4-93a)

To reduce the imaginary part of the input impedance to zero, the antenna is matched
or reduced in length until the reactance vanishes. The latter is most commonly used
in practice for half-wavelength dipoles.

Depending on the radius of the wire, the length of the dipole for first resonance
is about [ = 0.47A to 0.481; the thinner the wire, the closer the length is to 0.48A.
Thus, for thicker wires, a larger segment of the wire has to be removed from A/2 to
achieve resonance.

4.7 LINEAR ELEMENTS NEAR OR ON INFINITE PERFECT CONDUCTORS

Thus far we have considered the radiation characteristics of antennas radiating into an
unbounded medium. The presence of an obstacle, especially when it is near the radiating
element, can significantly alter the overall radiation properties of the antenna system.
In practice the most common obstacle that is always present, even in the absence of
anything else, is the ground. Any energy from the radiating element directed toward
the ground undergoes a reflection. The amount of reflected energy and its direction are
controlled by the geometry and constitutive parameters of the ground.

In general, the ground is a lossy medium (o # 0) whose effective conductivity
increases with frequency. Therefore it should be expected to act as a very good conduc-
tor above a certain frequency, depending primarily upon its composition and moisture
content. To simplify the analysis, it will first be assumed that the ground is a perfect
electric conductor, flat, and infinite in extent. The effects of finite conductivity and
earth curvature will be incorporated later. The same procedure can also be used to
investigate the characteristics of any radiating element near any other infinite, flat,
perfect electric conductor. Although infinite structures are not realistic, the developed
procedures can be used to simulate very large (electrically) obstacles. The effects that
finite dimensions have on the radiation properties of a radiating element can be conve-
niently accounted for by the use of the Geometrical Theory of Diffraction (Chapter 12,
Section 12.10) and/or the Moment Method (Chapter 8, Section 8.4).

4.7.1 Image Theory

To analyze the performance of an antenna near an infinite plane conductor, virtual
sources (images) will be introduced to account for the reflections. As the name implies,
these are not real sources but imaginary ones, which when combined with the real
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Figure 4.12 Vertical electric dipole above an infinite, flat, perfect electric conductor.

sources, form an equivalent system. For analysis purposes only, the equivalent system
gives the same radiated field on and above the conductor as the actual system itself.
Below the conductor, the equivalent system does not give the correct field. However,
in this region the field is zero and there is no need for the equivalent.

To begin the discussion, let us assume that a vertical electric dipole is placed a
distance i above an infinite, flat, perfect electric conductor as shown in Figure 4.12(a).
The arrow indicates the polarity of the source. Energy from the actual source is radi-
ated in all directions in a manner determined by its unbounded medium directional
properties. For an observation point Pj, there is a direct wave. In addition, a wave
from the actual source radiated toward point R; of the interface undergoes a reflection.
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The direction is determined by the law of reflection (6] = 6]) which assures that the
energy in homogeneous media travels in straight lines along the shortest paths. This
wave will pass through the observation point P;. By extending its actual path below the
interface, it will seem to originate from a virtual source positioned a distance & below
the boundary. For another observation point P, the point of reflection is R;, but the
virtual source is the same as before. The same is concluded for all other observation
points above the interface.

The amount of reflection is generally determined by the respective constitutive
parameters of the media below and above the interface. For a perfect electric conductor
below the interface, the incident wave is completely reflected and the field below the
boundary is zero. According to the boundary conditions, the tangential components of
the electric field must vanish at all points along the interface. Thus for an incident
electric field with vertical polarization shown by the arrows, the polarization of the
reflected waves must be as indicated in the figure to satisfy the boundary conditions. To
excite the polarization of the reflected waves, the virtual source must also be vertical
and with a polarity in the same direction as that of the actual source (thus a reflection
coefficient of +1).

Another orientation of the source will be to have the radiating element in a horizontal
position, as shown in Figure 4.24. Following a procedure similar to that of the vertical
dipole, the virtual source (image) is also placed a distance & below the interface but
with a 180° polarity difference relative to the actual source (thus a reflection coefficient
of —1).

In addition to electric sources, artificial equivalent “magnetic” sources and magnetic
conductors have been introduced to aid in the analyses of electromagnetic boundary-
value problems. Figure 4.13(a) displays the sources and their images for an electric
plane conductor. The single arrow indicates an electric element and the double a
magnetic one. The direction of the arrow identifies the polarity. Since many problems
can be solved using duality, Figure 4.13(b) illustrates the sources and their images
when the obstacle is an infinite, flat, perfect “magnetic” conductor.

4.7.2 \Vertical Electric Dipole

The analysis procedure for vertical and horizontal electric and magnetic elements near
infinite electric and magnetic plane conductors, using image theory, was illustrated
graphically in the previous section. Based on the graphical model of Figure 4.12, the
mathematical expressions for the fields of a vertical linear element near a perfect
electric conductor will now be developed. For simplicity, only far-field observations
will be considered.

Referring to the geometry of Figure 4.14(a), the far-zone direct component of the
electric field of the infinitesimal dipole of length /, constant current [, and observation
point P is given according to (4-26a) by

. klple ik
E9 = Jn747'[r sin 6, (4‘94)
1

The reflected component can be accounted for by the introduction of the virtual source
(image), as shown in Figure 4.14(a), and it can be written as

k]ol€7jkr2

Eg = JR””TQ sin 92 (4'95)
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Figure 4.13 Electric and magnetic sources and their images near electric (PEC) and
magnetic (PMC) conductors.

or
klole= ik
E = jin—2"" " sing, (4-95a)
47‘[7‘2

since the reflection coefficient R, is equal to unity.

The total field above the interface (z > 0) is equal to the sum of the direct and
reflected components as given by (4-94) and (4-95a). Since a field cannot exist inside
a perfect electric conductor, it is equal to zero below the interface. To simplify the
expression for the total electric field, it is referred to the origin of the coordinate system
(z=0).

In general, we can write that

ri = [r* 4+ h* — 2rhcos0]'"/? (4-96a)
ry=[r* +h*> — 2rhcos(r — 6)]'/? (4-96b)
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Figure 4.14 Vertical electric dipole above infinite perfect electric conductor.

For far-field observations (r > h), (4-96a) and (4-96b) reduce using the binomial
expansion to

ri>~r —hcos@ (4-97a)
r>~r+hcosf (4-97b)

As shown in Figure 4.14(b), geometrically (4-97a) and (4-97b) represent parallel lines.
Since the amplitude variations are not as critical

ry >~ r, ~r for amplitude variations (4-98)
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Using (4-97a)—(4-98), the sum of (4-94) and (4-95a) can be written as

kI —jkr
Ey ~ jn(ilT sin@[2 cos(kh cosf)] z >0 (4-99)
Ey=0 2<0

It is evident that the total electric field is equal to the product of the field of a single
source positioned symmetrically about the origin and a factor [within the brackets in
(4-99)] which is a function of the antenna height (%) and the observation angle (9).
This is referred to as pattern multiplication and the factor is known as the array factor
[see also (6-5)]. This will be developed and discussed in more detail and for more
complex configurations in Chapter 6.

The shape and amplitude of the field is not only controlled by the field of the
single element but also by the positioning of the element relative to the ground. To
examine the field variations as a function of the height &, the normalized (to 0 dB)
power patterns for 7 = 0, A/8, A/4,31/8, 1/2, and A have been plotted in Figure 4.15.
Because of symmetry, only half of each pattern is shown. For & > A/4 more minor
lobes, in addition to the major ones, are formed. As h attains values greater than A,
an even greater number of minor lobes is introduced. These are shown in Figure 4.16
for h = 2A and 5A. The introduction of the additional lobes in Figure 4.16 is usually
called scalloping. In general, the total number of lobes is equal to the integer that is
closest to

2h
number of lobes =~ - +1 (4-100)

Relative power
(dB down)

90° V90

Figure 4.15 Elevation plane amplitude patterns of a vertical infinitesimal electric dipole for
different heights above an infinite perfect electric conductor.
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Figure 4.16 Elevation plane amplitude patterns of a vertical infinitesimal electric dipole for
heights of 21 and 51 above an infinite perfect electric conductor.

Since the total field of the antenna system is different from that of a single element,
the directivity and radiation resistance are also different. To derive expressions for them,
we first find the total radiated power over the upper hemisphere of radius r using

1 2 /2
Prag = ﬁwav cds = — / |Eg|*r?sin6 dé d¢
d 2nJo Jo

/2
T 2.2

= —/ |Eg|“r~ sinf d6 (4-101)
nJo

which simplifies, with the aid of (4-99), to

Il

A

2 .
1 2 2
Jpp—— |:_ _cos(2kh) | sin( kh)i| 4-102)

3 (2kh)? (2kh)?

As kh — oo the radiated power, as given by (4-102), is equal to that of an isolated
element. However, for kA — 0, it can be shown by expanding the sine and cosine
functions into series that the power is twice that of an isolated element. Using (4-99),
the radiation intensity can be written as

1 N
U=r2W,=r <—|E9|2> U

2
o =3 ; sin® 0 cos®(kh cos 6) (4-103)

The maximum value of (4-103) occurs at = 7/2 and is given, excluding kh — oo, by

2
Ui
Unax = U|9=n/2 = 5

Ipl

4-103
. ( a)
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which is four times greater than that of an isolated element. With (4-102) and (4-103a),
the directivity can be written as

A7t Upax 2
Do = Pug [1 cos(2kh) sin(2kh)} (4-104)

3 (2kh)? (2kh)?

whose value for kh = 0 is 3. The maximum value occurs when kh = 2.881 (h =
0.4585A), and it is equal to 6.566 which is greater than four times that of an isolated
element (1.5). The pattern for & = 0.4585A is shown plotted in Figure 4.17 while the
directivity, as given by (4-104), is displayed in Figure 4.18 for 0 < h < 5A.

Using (4-102), the radiation resistance can be written as

(4-105)

r

2P IN?T1 cos(2kh)  sin(2kh)
- =2mn(=) |=-
[Io]2 A) 137 k) (2kh)?

whose value for kh — oo is the same and for kh = 0 is twice that of the isolated
element as given by (4-19). When kh = 0, the value of R, as given by (4-105) is only
one-half the value of an I’ = 2/ isolated element according to (4-19). The radiation
resistance, as given by (4-105), is plotted in Figure 4.18 for 0 < A < 5A when ! = A/50
and the element is radiating into free-space (n ~ 120m). It can be compared to the value
of R, = 0.316 ohms for the isolated element of Example 4.1.

In practice, a wide use has been made of a quarter-wavelength monopole (I = A/4)
mounted above a ground plane, and fed by a coaxial line, as shown in Figure 4.19(a).
For analysis purposes, a A/4 image is introduced and it forms the A/2 equivalent of
Figure 4.19(b). It should be emphasized that the A /2 equivalent of Figure 4.19(b) gives

Relative power
(dB down)

10

90°

90°

h=0.45851

Figure 4.17 Elevation plane amplitude pattern of a vertical infinitesimal electric dipole at a
height of 0.4585A above an infinite perfect electric conductor.
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Figure 4.18 Directivity and radiation resistance of a vertical infinitesimal electric dipole as a
function of its height above an infinite perfect electric conductor.
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Figure 4.19 Quarter-wavelength monopole on an infinite perfect electric conductor.
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the correct field values for the actual system of Figure 4.19(a) only above the inter-
face (z > 0,0 < 6 < m/2). Thus, the far-zone electric and magnetic fields for the A /4
monopole above the ground plane are given, respectively, by (4-84) and (4-85).

From the discussions of the resistance of an infinitesimal dipole above a ground
plane for kh = 0, it follows that the input impedance of a A/4 monopole above a
ground plane is equal to one-half that of an isolated A /2 dipole. Thus, referred to the
current maximum, the input impedance Z;, is given by

Zin (monopole) = 17, (dipole) = 3[73 + j42.5] = 36.5 + j21.25 (4-106)

where 73 4 j42.5 is the input impedance (and also the impedance referred to the
current maximum) of a A/2 dipole as given by (4-93a).

The same procedure can be followed for any other length. The input impedance
Zim = Ry, + jXim (referred to the current maximum) of a vertical A/2 dipole placed
near a flat lossy electric conductor, as a function of height above the ground plane, is
plotted in Figure 4.20, for 0 < h < A. Conductivity values considered were 1072, 107,
1, 10 S/m, and infinity (PEC). It is apparent that the conductivity does not strongly
influence the impedance values. The conductivity values used are representative of dry
to wet earth. It is observed that the values of the resistance and reactance approach, as
the height increases, the corresponding ones of the isolated element (73 ohms for the
resistance and 42.5 ohms for the reactance).

4.7.3 Approximate Formulas for Rapid Calculations and Design

Although the input resistance of a dipole of any length can be computed using (4-70)
and (4-79), while that of the corresponding monopole using (4-106), very good answers

120 T T T T T

—0=001S/m  f=200MHz
......... 0=010S/m a=10°2

---- 0=100S8/m  &=10.0 _
----- 6 =10.0 S/m

——— PEC (6= ) .
—-— No ground

Input impedance Z;,,, (chms)

20 -

0 ! ! ! !
0 0.2 0.4 0.6 0.8 1.0

Height i (wavelengths)

Figure 4.20 Input impedance of a vertical /2 dipole above a flat lossy electric conduct-
ing surface.
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can be obtained using simpler but approximate expressions. Defining G as

G = kl/2 for dipole (4-107a)
G = ki for monopole (4-107b)

where [ is the total length of each respective element, it has been shown that the input
resistance of the dipole and monopole can be computed approximately using [13]

0<G<m/4
(maximum input resistance of dipole is less than 12.337 ohms)
R, (dipole) = 20G> 0<1<xr/4 (4-108a)
R;, (monopole) = 10G> 0 <1 < 1/8 (4-108b)
/4 <G <m/2
(maximum input resistance of dipole is less than 76 .383 ohms)
R;, (dipole) = 24.7G*3 rad<Il<n/2 (4-109a)
R;, (monopole) = 12.35G*° 1/8 <l < 1/4 (4-109b)
T/2<G<?2
(maximum input resistance of dipole is less than 200.53 ohms)
R;, (dipole) = 11.14G*!7 1/2 <1 < 0.63661 (4-110a)
R;, (monopole) = 5.57G*!7 1/4 <1 < 0.3183x (4-110b)

Besides being much simpler in form, these formulas are much more convenient in
design (synthesis) problems where the input resistance is given and it is desired to
determine the length of the element. These formulas can be verified by plotting the
actual resistance versus length on a log—log scale and observe the slope of the line [13].
For example, the slope of the line for values of G up to about /4 >~ 0.75 is 2.

Example 4.4

Determine the length of the dipole whose input resistance is 50 ohms. Verify the answer.
Solution: Using (4-109a)
50 = 24.7G*°

or
G =1.3259 =kl/2

Therefore
[ =0.422x

Using (4-70) and (4-79) R;, for 0.422) is 45.816 ohms, which closely agrees with the
desired value of 50 ohms. To obtain 50 ohms using (4-70) and (4-79), [ = 0.4363A.
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4.7.4 Antennas for Mobile Communication Systems

The dipole and monopole are two of the most widely used antennas for wireless
mobile communication systems [14]—[18]. An array of dipole elements is extensively
used as an antenna at the base station of a land mobile system while the monopole,
because of its broadband characteristics and simple construction, is perhaps to most
common antenna element for portable equipment, such as cellular telephones, cordless
telephones, automobiles, trains, etc. The radiation efficiency and gain characteristics
of both of these elements are strongly influenced by their electrical length which is
related to the frequency of operation. In a handheld unit, such as a cellular telephone,
the position of the monopole element on the unit influences the pattern while it does
not strongly affect the input impedance and resonant frequency. In addition to its use
in mobile communication systems, the quarter-wavelength monopole is very popular
in many other applications. An alternative to the monopole for the handheld unit is the
loop, which is discussed in Chapter 5. Other elements include the inverted F, planar
inverted F antenna (PIFA), microstrip (patch), spiral, and others [14]—[18].

The variation of the input impedance, real and imaginary parts, of a vertical
monopole antenna mounted on an experimental unit, simulating a cellular telephone,
are shown in Figure 4.21(a,b) [17]. It is apparent that the first resonance, around
1,000 MHz, is of the series type with slowly varying values of impedance versus
frequency, and of desirable magnitude, for practical implementation. For frequencies
below the first resonance, the impedance is capacitive (imaginary part is negative), as is
typical of linear elements of small lengths (see Figure 8.17); above the first resonance,
the impedance is inductive (positive imaginary part). The second resonance, around
1,500 MHz, is of the parallel type (antiresonance) with large and rapid changes in
the values of the impedance. These values and variation of impedance are usually
undesirable for practical implementation. The order of the types of resonance (series
vs. parallel) can be interchanged by choosing another element, such as a loop, as
illustrated in Chapter 5, Section 5.8, Figure 5.20 [18]. The radiation amplitude patterns
are those of a typical dipole with intensity in the lower hemisphere.

Examples of monopole type antennas used in cellular and cordless telephones,
walkie-talkies, and CB radios are shown in Figure 4.22. The monopoles used
in these units are either stationary or retractable/telescopic. The length of the
retractable/telescopic monopole, such as the one used in the Motorola StarTAC and
in others, is varied during operation to improve the radiation characteristics, such as
the amplitude pattern and input impedance. During nonusage, the element is usually
retracted within the body of the device to prevent it from damage. Units that do not
utilize a visible monopole type of antenna, such as the one of the cellular telephones in
Figure 4.22, use embedded/hidden type of antenna element. One such embedded/hidden
element that is often used is a planar inverted F antenna (PIFA) [16]; there are others.
Many of the stationary monopoles are often covered with a dielectric cover. Within
the cover, there is typically a straight wire. However, another design that is often used
is a helix antenna (see Chapter 10, Section 10.3.1) with a very small circumference
and overall length so that the helix operates in the normal mode, whose relative pattern
is exhibited in Figure 10.14(a) and which resembles that of a straight-wire monopole.
The helix is used, in lieu of a straight wire, because it can be designed to have larger
input impedance, which is more attractive for matching to typical feed lines, such as a
coaxial line (see Problem 10.18).
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Figure 4.21 Input impedance, real and imaginary parts, of a vertical monopole mounted on
an experimental cellular telephone device.

An antenna configuration that is widely used as a base-station antenna for mobile
communication and is seen almost everywhere is shown in Figure 4.23. It is a triangular
array configuration consisting of twelve dipoles, with four dipoles on each side of the
triangle. Each four-element array, on each side of the triangle, is used to cover an
angular sector of 120°, forming what is usually referred to as a sectoral array [see
Section 16.3.1(B) and Figure 16.6(a)].
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Figure 4.22 Examples of stationary, retractable/telescopic and embedded/hidden antennas used
in commercial cellular and cordless telephones, walkie-talkies, and CB radios. (source: Repro-
duced with permissions from Motorola, Inc. © Motorola, Inc.; Samsung © Samsung; Midland
Radio Corporation © Midland Radio Corporation).

4.7.5 Horizontal Electric Dipole

Another dipole configuration is when the linear element is placed horizontally relative
to the infinite electric ground plane, as shown in Figure 4.24. The analysis procedure of
this is identical to the one of the vertical dipole. Introducing an image and assuming far-
field observations, as shown in Figure 4.25(a,b), the direct component can be written as

klIgle=7kn
Ed = jn% sin ¥ 4-111)
1
and the reflected one by
klole=7kr
Ej, = thn% sin ¥ (4-112)
2
or ,
. _ klgle k2
E'// = —]T]Trz Slnlp (4-1123)
since the reflection coefficient is equal to R, = —1.

To find the angle v, which is measured from the y-axis toward the observation
point, we first form

cosy =a,-a, =4, - (a,sinfcos¢ +a,sinfsing + a,cosd) = sinH sin ¢
(4-113)
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Figure 4.23 Triangular array of dipoles used as a sectoral base-station antenna for mobile

communication.
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Figure 4.24 Horizontal electric dipole, and its associated image, above an infinite, flat, perfect
electric conductor.
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Figure 4.25 Horizontal electric dipole above an infinite perfect electric conductor.

from which we find

sinyy = /1 —cos?yy = /1 —sin’@sin’ ¢

Since for far-field observations

ry>~r —hcosf

for phase variations
r~r+hcos6

rnXrnx>~r for amplitude variations

(4-114)

(4-115a)

(4-115b)
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the total field, which is valid only above the ground plane (z > ;0 <0 <7/2,0 <
¢ < 2m), can be written as

d , . kloleijkr ) ..
Ey=E,+E,=jn——— 1 — sin” 6 sin” ¢ [2] sin(kh cos 6)] (4-116)
4y

Equation (4-116) again consists of the product of the field of a single isolated element
placed symmetrically at the origin and a factor (within the brackets) known as the
array factor. This again is the pattern multiplication rule of (6-5) which is discussed
in more detail in Chapter 6.

Example 4.5

Using the vector potential A and the procedure outlined in Section 3.6 of Chapter 3, derive
the far-zone spherical electric and magnetic field components of a horizontal infinitesimal
dipole placed at the origin of the coordinate system of Figure 4.1.

Solution: Using (4-4), but for a horizontal infinitesimal dipole of uniform current directed
along the y-axis, the corresponding vector potential can be written as
wlple= Ik

_=&v

dmr

with the corresponding spherical components, using the rectangular to spherical components
transformation of (4-5), expressed as

. plote™ .
Ag = Ay cosfsingg = —————cos 0 sing
T
10 —jkr
Ay = Aycosp = %cosq}
’ 4mr

Using (3-58a) and (3-58b), we can write the corresponding far-zone electric and magnetic
field components as

o . ~oplgle Ik .
Ey = —jwAg = —j———cosOsing
dmr
. .wuloﬂe_jk’
Ey = —jwA, = —j——— cos
¢ Jole / dmrr ¢
E wulple Ik
Hy = = chos¢
n 4 nr
E wplyle 5
Hy = +20 = +jM07 cos 6 sin ¢
n 4mnr

Although the electric-field components, and thus the magnetic field components, take a
different analytical form than (4-111), the patterns are the same.

To examine the variations of the total field as a function of the element height
above the ground plane, the two-dimensional elevation plane patterns (normalized to
0 dB) for ¢ =90° (y-z plane) when h =0, 1/8,1/4,31/8,1/2, and A are plotted
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Figure 4.26 Elevation plane (¢ = 90°) amplitude patterns of a horizontal infinitesimal electric
dipole for different heights above an infinite perfect electric conductor.

in Figure 4.26. Since this antenna system is not symmetric with respect to the z axis,
the azimuthal plane (x-y plane) pattern is not isotropic.

To obtain a better visualization of the radiation intensity in all directions above the
interface, the three-dimensional pattern for # = A is shown plotted in Figure 4.27. The
radial distance on the x-y plane represents the elevation angle 6 from 0° to 90°, and
the z-axis represents the normalized amplitude of the radiation field intensity from O
to 1. The azimuthal angle ¢ (0 < ¢ < 27m) is measured from the x- toward the y-axis
on the x-y plane.

As the height increases beyond one wavelength (2 > A), a larger number of lobes
is again formed. This is illustrated in Figure 4.28 for 2 = 21 and 5A. The scalloping
effect is evident here, as in Figure 4-16 for the vertical dipole. The total number of
lobes is equal to the integer that most closely is equal to

h
number of lobes >~ 2 <X> 4-117)

with unity being the smallest number.
Following a procedure similar to the one performed for the vertical dipole, the
radiated power can be written as

| Iyl ’r2 sin(2kh)  cos(2kh)  sin(2kh)
Poa=nz|—| |3 — — 3 3 (4-118)
2| A 3 2kh (2kh) (2kh)?
and the radiation resistance as
R, = o £ 2 % B sin(2kh) B cos(2kh)  sin(2kh) 4-119)
A 3 2kh (2kh)? (2kh)3
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x-z plane(¢=0°) y-z plane(9=90°)

Figure 4.27 Three-dimensional amplitude pattern of an infinitesimal horizontal dipole a dis-
tance & = A above an infinite perfect electric conductor.

90°

— h=2A — h=5A

Figure 4.28 Elevation plane (¢ = 90°) amplitude patterns of a horizontal infinitesimal electric
dipole for heights 21 and 5X above an infinite perfect electric conductor.
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By expanding the sine and cosine functions into series, it can be shown that (4-119)
reduces for small values of ki to

2 2 3 2 2
kh—0 l 2 2 8 (2mh 32 (1 h
R, = - —— 4+ —=— = - - 4-120
””(,\) [3 3+15(,\)] s (,\) (A) (4-120)
For kh — o0, (4-119) reduces to that of an isolated element. The radiation resistance,
as given by (4-119), is plotted in Figure 4.29 for 0 < A < 5A when [ = A/50 and the

antenna is radiating into free-space (n >~ 120m).
The radiation intensity is given by

2 2
U~ ;—|E¢|2 = g (1 — sin? @ sin? ¢) sin®(kh cos ) (4-121)
n

Iyl
A

The maximum value of (4-121) depends on the value of kh (whether kh < 7/2,h <
A4 or kh > /2, h > A/4). It can be shown that the maximum of (4-121) is:

2 kh <m/2 (h <A/4)
n I()l -2 o
s sin“(kh) ©® =0 (4-122a)
Umax= 5 kh>7T/2 (l’l>)\/4)
n | Lol [¢ = 0° and sin(kh cosOpmgy) = 1 (4-122b)
20 A OF Omax = cos™ ! (7r/2kh)]

Using (4-118) and (4-122a), (4-122b), the directivity can be written as

4sin’(kh)
— kh<m/2 (h<M\/4 4-123
U | RO <7/2 (h < /4 (4-123a)
"= P ] 4
rad — kh > /2 (h > )/4) (4-123b)
R(kh)
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Figure 4.29 Radiation resistance and maximum directivity of a horizontal infinitesimal electric
dipole as a function of its height above an infinite perfect electric conductor.
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where
2 sin(2kh)  cos(2kh)  sin(2kh)

R(kh):[g i o (Zkh)g)} (4-123c)

For small values of kh (kh — 0), (4-123a) reduces to

4 sin?(kh in kh\?>
D, K=0 sin”(kh) —7s (2R (4-124)
2 2 8 kh
373775

For h = 0 the element is shorted and it does not radiate. The directivity, as given by
(4-123a)—(4-123b) is plotted for 0 < & < 5A in Figure 4.29. It exhibits a maximum
value of 7.5 for small values of #. Maximum values of slightly greater than 6 occur
when A ~ (0.6154+n/2)A,n =1,2,3,....

The input impedance Z;,, = R;, + j X;, (referred to the current maximum) of a hor-
izontal A /2 dipole above a flat lossy electric conductor is shown plotted in Figure 4.30
for 0 < h < A. Conductivities of 1072, 107!, 1, 10 S/m, and infinity (PEC) were con-
sidered. It is apparent that the conductivity does have a more pronounced effect on
the impedance values, compared to those of the vertical dipole shown in Figure 4.20.
The conductivity values used are representative of those of the dry to wet earth. The
values of the resistance and reactance approach, as the height increases, the corre-
sponding values of the isolated element (73 ohms for the resistance and 42.5 ohms for
the reactance).
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Figure 4.30 Input impedance of a horizontal A/2 above a flat lossy electric conducting surface.
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4.8 GROUND EFFECTS

In the previous two sections the variations of the radiation characteristics (pattern, radi-
ation resistance, directivity) of infinitesimal vertical and horizontal linear elements were
examined when they were placed above plane perfect electric conductors. Although
ideal electric conductors (o = co) are not realizable, their effects can be used as
guidelines for good conductors (o >> we, where € is the permittivity of the medium).

One obstacle that is not an ideal conductor, and it is always present in any antenna
system, is the ground (earth). In addition, the earth is not a plane surface. To simplify the
analysis, however, the earth will initially be assumed to be flat. For pattern analysis,
this is a very good engineering approximation provided the radius of the earth is
large compared to the wavelength and the observation angles are greater than about
57.3/(ka)'/? degrees from grazing (a is the earth radius) [19]. Usually these angles
are greater than about 3°.

In general, the characteristics of an antenna at low (LF) and medium (MF) frequen-
cies are profoundly influenced by the lossy earth. This is particularly evident in the
input resistance. When the antenna is located at a height that is small compared to
the skin depth of the conducting earth, the input resistance may even be greater than
its free-space values [19]. This leads to antennas with very low efficiencies. Improve-
ments in the efficiency can be obtained by placing radial wires or metallic disks on
the ground.

The analytical procedures that are introduced to examine the ground effects are
based on the geometrical optics models of the previous sections. The image (virtual)
source is again placed a distance & below the interface to account for the reflection.
However, for each polarization nonunity reflection coefficients are introduced which,
in general, will be a function of the angles of incidence and the constitutive param-
eters of the two media. Although plane wave reflection coefficients are used, even
though spherical waves are radiated by the source, the error is small for conducting
media [20]. The spherical nature of the wavefront begins to dominate the reflection
phenomenon at grazing angles (i.e., as the point of reflection approaches the hori-
zon) [21]. If the height (k) of the antenna above the interface is much less than the
skin depth 6[6 = +/2/(wpo)] of the ground, the image depth & below the interface
should be increased [20] by a complex distance §(1 — j).

The geometrical optics formulations are valid provided the sources are located inside
the lossless medium. When the sources are placed within the ground, the formulations
should include possible surface-wave contributions. Exact boundary-value solutions,
based on Sommerfeld integral formulations, are available [19]. However they are too
complex to be included in an introductory chapter.

4.8.1 Vertical Electric Dipole

The field radiated by an electric infinitesimal dipole when placed above the ground
can be obtained by referring to the geometry of Figures 4.14(a) and (b). Assuming the
earth is flat and the observations are made in the far field, the direct component of
the field is given by (4-94) and the reflected component by (4-95) where the reflection
coefficient R, is given by

0; — 0,
R, — 1o COS mecost _ R (4-125)
no cos B; + 1y cos 6,
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where Ry is the reflection coefficient for parallel polarization [7] and

Mo . ... .
no = ./— = intrinsic impedance of free-space (air)
€0

%)
n = /]7'(,“ = intrinsic impedance of the ground
o1 + Jwe

6; = angle of incidence (relative to the normal)
6, = angle of refraction (relative to the normal)

The angles 6; and 6, are related by Snell’s law of refraction
Yo sin6; = y) sin 6, (4-126)

where
Yo = jko = propagation constant for free-space (air)
ko = phase constant for free-space (air)
y1 = (a1 + jki) = propagation constant for the ground
o = attenuation constant for the ground
k; = phase constant for the ground

Using the far-field approximations of (4-97a)—(4-98), the total electric field above
the ground (z > 0) can be written as

 klgle=i*r

Ey = jn Sin@[ejkhcosﬂ + Rve—jkhcosﬂ] z>0 (4_127)

Arr
where R, is given by (4-125).

The permittivity and conductivity of the earth are strong functions of the ground’s
geological constituents, especially its moisture. Typical values for the relative permit-
tivity €, (dielectric constant) are in the range of 5—100 and for the conductivity o in
the range of 107* — 1 S/m.

A normalized (to 0 dB) pattern for an infinitesimal dipole above the ground with
h=x/4,¢,1 =5, f =1GHz,01 = 10~2 S/m is shown plotted in Figure 4.31 (dashed
curves) where it is compared with that (solid curve) of a perfect conductor (o7 = 00).
In the presence of the ground, the radiation toward the vertical direction (60° > 6 > 0°)
is more intense than that for the perfect electric conductor, but it vanishes for grazing
angles (9 = 90°). The null field toward the horizon (8 = 90°) is formed because the
reflection coefficient R, approaches —1 as 6; — 90°. Thus the ground effects on the
pattern of a vertically polarized antenna are significantly different from those of a
perfect conductor.

Significant changes also occur in the impedance. Because the formulation for the
impedance is much more complex [19], it will not be presented here. Graphical illus-
trations for the impedance change of a vertical dipole placed a height & above a
homogeneous lossy half-space, as compared to those in free-space, can be found
in [22].

4.8.2 Horizontal Electric Dipole

The analytical formulation of the horizontal dipole above the ground can also
be obtained in a similar manner as for the vertical electric dipole. Referring to
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Figure 4.31 Elevation plane amplitude patterns of an infinitesimal vertical dipole above a
perfect electric conductor (o7 = 00) and a flat earth (o7 = 0.01 S/m, ¢,; =5, f = 1 GHz).

Figure 4.25(a) and (b), the direct component is given by (4-111) and the reflected
by (4-112) where the reflection coefficient R, is given by

(4-128)

R — | Rifor¢= 0°, 180° plane
"7 1 Ry for ¢ = 90°,270° plane

where R is the reflection coefficient for parallel polarization, as given by (4-125), and
R, is the reflection coefficient for perpendicular polarization given by [7]

M cos6; — ng cos b,

R, (4-128a)

B N1 cosb; + ng cos b,

The angles 6; and 6, are again related by Snell’s law of refraction as given by (4-126).
Using the far-field approximations of (4-115a) and (4-115b), the total field above
the ground (z > &) can be written as

kIye /% ‘ ‘
E, = jnfi,/l — sin?@sin? ¢ [e/h0S0 Ry emIkheOsO) 2 s o (4-129)
Tr

where Rj, is given by (4-128).

The normalized (to 0 dB) pattern in the y-z plane (¢ = 90°) for A = A/4 is shown
plotted in Figure 4.32 (dashed curve) where it is compared with that (solid curve) of
a perfect conductor (o] = 00). In the space above the interface, the relative pattern
in the presence of the ground is not significantly different from that of a perfect
conductor. This becomes more evident by examining R; as given by (4-128). For a
ground medium, the values of R; for most observation angles are not much different
from —1 (the value of Ry for a perfect conductor). For grazing angles (6; — 90°), the
values of Rj, for the lossy ground approach —1 very rapidly. Thus the relative pattern
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30°
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Oj=e =——=0,=1028/m,¢,=5, f=1GHz

h=A/4,¢=90°

Figure 4.32 Elevation plane (¢ = 90°) amplitude patterns of an infinitesimal horizontal dipole
above a perfect electric conductor (07 =o0) and a flat earth (o = 0.01 S/m, ¢, =5,
f =1GHz).

of a horizontal dipole above a lossy surface is not significantly different from that
above a perfect conductor.

4.8.3 Earth Curvature

Antenna pattern measurements on aircraft can be made using either scale models or
full scale in-flight. Scale model measurements usually are made indoors using electro-
magnetic anechoic chambers, as described in Chapter 17. The indoor facilities provide
a controlled environment, and all-weather capability, security, and minimize electro-
magnetic interference. However, scale model measurements may not always simulate
real-life outdoor conditions, such as the reflecting surface of seawater. Therefore full-
scale model measurements may be necessary. For in-flight measurements, reflecting
surfaces, such as seawater, introduce reflections, which usually interfere with the direct
signal. These unwanted signals are usually referred to as multipath. Therefore the total
measured signal in an outdoor system configuration is the combination of the direct
signal and that due to multipath, and usually it cannot be easily separated in its parts
using measuring techniques. Since the desired signal is that due to the direct path,
it is necessary to be able to subtract from the total response the contributions due
to multipath. This can be accomplished by developing analytical models to predict
the contributions due to multipath, which can then be subtracted from the total signal
in order to be left with the desired direct path signal. In this section we will briefly
describe techniques that have been used to accomplish this [23], [24].

The analytical formulations of Sections 4.8.1 and 4.8.2 for the patterns of vertical
and horizontal dipoles assume that the earth is flat. This is a good approximation
provided the curvature of the earth is large compared to the wavelength and the angle
of observation is greater than about 3° from grazing [or more accurately greater than
about 57.3/(ka)'/ degrees, where a is the radius of the earth] from grazing [25].
The curvature of the earth has a tendency to spread out (weaken, diffuse, diverge) the
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reflected energy more than a corresponding flat surface. The spreading of the reflected
energy from a curved surface as compared to that from a flat surface is taken into
account by introducing a divergence factor D [21], [23], [24], defined as

. reflected field from curved surface
D = divergence factor = (4-130)
reflected field from flat surface

The formula for D can be derived using purely geometrical considerations. It is accom-
plished by comparing the ray energy density in a small cone reflected from a sphere
near the principal point of reflection with the energy density the rays (within the same
cone) would have if they were reflected from a plane surface. Based on the geometrical
optics energy conservation law for a bundle of rays within a cone, the reflected rays
within the cone will subtend a circle on a perpendicular plane for reflections from
a flat surface, as shown in Figure 4.33(a). However, according to the geometry of
Figure 4.33(b), it will subtend an ellipse for a spherical reflecting surface. Therefore
the divergence factor of (4-130) can also be defined as

D

E; area contained in circle |/
== (4-131)

- E_; | area contained in ellipse
where

E; = reflected field from spherical surface

E’; = reflected field from flat surface

Using the geometry of Figure 4.34, the divergence factor can be written as [7]

and [24]
P1P;
(o] +5)(p5 +5)

D= , (4-132)
N

s+ s

where p| and pj are the principal radii of curvature of the reflected wavefront at the
point of reflection and are given, according to the geometry of Figure 4.34, by

1 1 1 1 4

- - 4-132
Py s + p sinyr + (psiny)? a2 ( 2)
L1 + ! ! 4 (4-132b)
oy s psiny (psiny)?  a?
a
_ 4-132¢
P sin? v ( )

A simplified form of the divergence factor is that of [26]

2s's -1z 2s’s -1z
D=1+ ———— 1T+ — 4-133
|: +a(s/+s)sin1/fi| [ +a(s/—|—s)i| ( )

Both (4-132) and (4-133) take into account the earth curvature in two orthogonal planes.
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Figure 4.33 Reflection from flat and spherical surfaces.

Assuming that the divergence of rays in the azimuthal plane (plane vertical to the
page) is negligible (two-dimensional case), the divergence factor can be written as

ss’ -2
D~|14+2— 4-134
|: + adtanlp:| ( )
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Observation

Source

Figure 4.34 Geometry for reflections from a spherical surface.

where ¥ is the grazing angle. Thus the divergence factor of (4-134) takes into account
energy spreading primarily in the elevation plane. According to Figure 4.34
h| = height of the source above the earth (with respect to the tangent at the point
of reflection)
h, = height of the observation point above the earth (with respect to the tangent
at the point of reflection)
d = range (along the surface of the earth) between the source and the
observation point
a = radius of the earth (3,959 mi). Usually a % radius (~ 5,280 mi) is used.
Y = reflection angle (with respect to the tangent at the point of reflection).
d; = distance (along the surface of the earth) from the source to the
reflection point
d, = distance (along the surface of the earth) from the observation point to the
reflection point
The divergence factor can be included in the formulation of the fields radiated by a
vertical or a horizontal dipole, in the presence of the earth, by modifying (4-127) and
(4-129) and writing them, respectively, as

klgle /%" o o
E9 — janing[e/khcosé _i_DRve—/khcosO] (4_1353)
Tr
klole /%" _— .
Ey = j”%mw"m” + DRye M <%]  (4-135b)
Tr

While the previous formulations are valid for smooth surfaces, they can still be used
with rough surfaces, provided the surface geometry satisfies the Rayleigh criterion [21]

and [26] N

hpy < —— (4-136)
8sin
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where A, is the maximum height of the surface roughness. Since the dividing line
between a smooth and a rough surface is not that well defined, (4-136) should only be
used as a guideline.

The coherent contributions due to scattering by a surface with Gaussian rough
surface statistics can be approximately accounted for by modifying the vertical and
horizontal polarization smooth surface reflection coefficients of (4-125) and (4-128)
and express them as

R, = R e 2Mahocost)” (4-137)

where
o = reflection coefficient of a rough surface for either vertical or horizontal
polarization
RS_ , = reflection coefficient of a smooth surface for either vertical (4-125) or
horizontal (4-128) polarization
h(z) = mean-square roughness height

A slightly rough surface is defined as one whose rms height is much smaller than the
wavelength, while a very rough surface is defined as one whose rms height is much
greater than the wavelength.

Plots of the divergence factor as a function of the grazing angle v (or as a function
of the observation point /) for different source heights are shown in Figure 4.35. It
is observed that the divergence factor is somewhat different and smaller than unity
for small grazing angles, and it approaches unity as the grazing angle becomes larger.
The variations of D displayed in Figure 4.35 are typical but not unique. For different
positions of the source and observation point, the variations will be somewhat different.
More detailed information on the variation of the divergence factor and its effect on
the overall field pattern is available [24].

o ———
- ecssceccscc coscccscce
X A4

091 - .-"...
. L]
Q
3
*g 0.8
—
3
=
gﬂ 07k Range (d) = 10 statute miles (16.09 km)
é — 1} =10 ft (3.048 m)
- ) =40 ft (12.192 m)
0.6 -
eccccee hll =100 ft (30.48 m)
0.5 | | 1 | 1 1 1 .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Grazing angle y (degrees)

Figure 4.35 Divergence factor for a 4/3 radius earth (a, = 5,280 mi = 8,497.3 km) as a func-
tion of grazing angle .
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The most difficult task usually involves the determination of the reflection point
from a knowledge of the heights of the source and observation points, and the range
d between them. Procedures to do this have been developed [21], [23]-[27].

However, the one presented here is more accurate and does not require either itera-
tive or graphical solutions. To find d; and d, (given d, h,, and h,), the cubic equation
of [21] is utilized

2d} —3dd; +[d* = 2a(hi + hy)ld) + 2ahyd = 0 (4-138)

with solution given by

d Q
4 =% 4 poos (2T (4-138a)
2 3
dy= d — d (4-138b)
2 Jathy +h) + ay’ (4-138¢)
=—./a — -138¢
p «/5 1 2 )
2a(h) — hy)d
Q = cos! [M} (4-138d)
p

Equation (4-138) is valid provided that « — 8 is small, such that sin(e — 8) ~ o —
B,cos(e —B) ~ 1 — (« — B)?/2,sin B ~ B, and cos B =~ 1 — (B8)?/2. Once d; and d,
are found, then successively 8, y, s, s, ¥, r1, 12, o, oz‘li, o}, and ag! can be determined
using the geometry of Figure 4.34.

Using the analytical model developed here, computations were made to see how well
the predictions compared with measurements. For the computations it was assumed
that the reflecting surface is seawater possessing a dielectric constant of 81 and a
conductivity of 4.64 S/m [23], [24]. To account for atmospheric refraction, a 4/3 earth
was assumed [21], [23], [28] so the atmosphere above the earth can be considered
homogeneous with propagation occurring along straight lines.

For computations using the earth as the reflecting surface, all three divergence
factors of (4-132)—(4-134) gave the same results. However, for nonspherical reflecting
surfaces and for those with smaller radii of curvature, the divergence factor of (4-132)
is slightly superior followed by (4-133) and then by (4-134). In Figure 4.36 we display
and compare the predicted and measured height gain versus range d (4 <d < 14
nautical miles) for a vertical-vertical polarization system configuration at a frequency
of 167.5 MHz. The height gain is defined as the ratio of the total field in the presence
of the earth divided by the total field in the absence of the earth. A good agreement is
noted between the two. The peaks and nulls are formed by constructive and destructive
interferences between the direct and reflected components. If the reflecting surface
were perfectly conducting, the maximum height gain would be 2 (6 dB). Because the
modeled reflecting surface of Figure 4.36 was seawater with a dielectric constant of
81 and a conductivity of 4.64 S/m, the maximum height gain is less than 6 dB. The
measurements were taken by aircraft and facilities of the Naval Air Warfare Center,
Patuxent River, MD. Additional measurements were made but are not included here;
they can be found in [29] and [30].
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Figure 4.36 Measured and calculated height gain over the ocean (¢, = 81, 0 = 4.64 S/m) for
vertical polarization.

A summary of the pertinent parameters, and associated formulas and equation num-
bers for this chapter are listed in Table 4.2.

4.9 COMPUTER CODES

There are many computer codes that have been developed to analyze wire-type lin-
ear antennas, such as the dipole, and they are too numerous to mention here. One
simple program to characterize the radiation characteristics of a dipole, designated as
Dipole (both in FORTRAN and MATLAB), is included in the attached CD. Another
much more advanced program, designated as the Numerical Electromagnetics Code
(NEC), is a user-oriented software developed by Lawrence Livermore National Lab-
oratory [31]. It is a Method of Moments (MoM) code for analyzing the interaction
of electromagnetic waves with arbitrary structures consisting of conducting wires and
surfaces. It is probably the most widely distributed and used electromagnetics code.
Included with the distribution are graphics programs for generating plots of the struc-
ture, antenna patterns, and impedance. There are also other commercial software that
are based on the NEC. A compact version of the NEC is the MININEC (Mini-
Numerical Electromagnetics Code) [31]—[33]. The MININEC is more convenient for
the analysis of wire-type antennas. More information can be obtained by contacting:

G. J. Burke, L-156

Lawrence Livermore National Laboratory
P. O. Box 5504

Livermore, CA 94550
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TABLE 4.2 Summary of Important Parameters and Associated Formulas and Equation
Numbers for a Dipole in the Far Field

Parameter Formula Equation Number
Infinitesimal Dipole
(l < A/50)

Normalized power U = (Egp)?* = Cy sin® 0 (4-29)
pattern

s - 27\ [ 1\2 1\?2 i
Radiation resistance R=n(Z)(<) =80ox?(= (4-19)
R, " 3 A 2

~ 2\ (1) 1\?
Input resistance Rn=R =n(=— ) —son2( = (4-19)
Rin 3 A A
. Ey
Wave impedance Zy= A ~ n =377 ohms
Zy ¢
N 3

Directivity Dy Dy = 2 =1.761 dB (4-31)

. . 3A2
Maximum effective Ao = - (4-32)
area A,,, T
Vector effective £, = —aglsing (2-91),
length £, €l = A Example 4.2
Half-power HPBW = 90° (4-65)
beamwidth
L istance R R, = L [ero_ L [oro (2-90b)

0SS resistance =— | —=—|— -
t TP V2o T 27abV 20
Small Dipole
(/50 < £ < 1/10)
Normalized power U = (Egy)? = Cysin 6 (4-36a)
pattern
1\2
Radiation resistance R, = 20x? <X) (4-37)
R,
1\2

Input resistance Ry, Ry = R, = 2072 <X) 4-37)

(continued overleaf’)
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TABLE 4.2 (continued)
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Zy

Parameter Formula Equation Number
. Eq
Wave impedance Zy = A ~ n =377 ohms (4-36a), (4-36¢)
¢

Directivity Dy

3
Dy =3 = 1761 dB

Maximum effective
area A,

37

Ay = 2
" 8

R,

1
Vector effective L, = —ay 3 sin 6 (2-91),
length €,
1
Me'max = 5 (4-363)
Half-power HPBW = 90° (4-65)
beamwidth
Half Wavelength Dipole
(I=4/2)
P 2
cos <— cos 9)
Normalized power U = (Egp)?* = C» 27 ~ C, sin® 6 (4-87)
sin 6
pattern
Radiation resistance R, = 4iC,~,l (27) >~ 73 ohms (4-93)
T

beamwidth

Input resistance R;, Ry, = R, = %Cm (2m) >~ 73 ohms (4-79), (4-93)
T
Input impedance Zin =73+ j42.5 (4-93a)
Zin
. Eq
Wave impedance Z, = — ~n =377 ohms
z Hy
L 4
Directivity Dy Dy = ~ 1.643 =2.156 dB (4-91)
Cin (zﬂ)
b1
3, €os <— cos 9)
Vector effective 0, = —ay 279 2-91),
length £, T s
A
[€o|max = — = 0.31831 (4-84)
b1
Half-power HPBW = 78° (4-65)
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TABLE 4.2 (continued)

Parameter Formula Equation Number
. I [org 1 WL
Loss resistance R; Rh=—|—=—+[— Example (2-13)
2P\ 20 4rb\ 20
Quarter-Wavelength Monopole
I=Ar/4
2
cos (ﬁ cos 9)
Normalized power U = (Ep,)? =C, 27 ~ C,sin®0 (4-87)
sin @
pattern
Radiation resistance R, = Sici" (2m) ~ 36.5 ohms (4-106)
R, T
Input resistance R;, Ry, =R, = Sicin (2m) ~ 36.5 ohms (4-106)
T
Input impedance Ziy =365+ j21.25 (4-106)
Zin
. Eq
Wave impedance Zy, = — ~n =377 ohms
z Hy
w
Directivity Dy Dy =3.286 = 5.167 dB
. . A T
Vector effective £, = —ay— cos (— cos 6) (2-91)
1 b4 2
ength €,
A
[€e|max = — = 0.31831 (4-84)
big

4.10 MULTIMEDIA

In the CD that is part of the book, the following multimedia resources are included for
the review, understanding, and visualization of the material of this chapter.

a. Java-based interactive questionnaire, with answers.

b. Java-based applet for computing and displaying the radiation characteristics of
a dipole.

c. Java-based visualization/animation for displaying the radiation characteristics
of a dipole of different lengths.

d. Matlab and Fortran computer program, designated Dipole, for computing the
radiation characteristics of a dipole. The description of the program is found in
the corresponding READ ME file of the attached CD.

e. Power Point (PPT) viewgraphs, in multicolor.
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PROBLEMS

4.1. A horizontal infinitesimal electric dipole of constant current /; is placed sym-

metrically about the origin and directed along the x-axis. Derive the
(a) far-zone fields radiated by the dipole
(b) directivity of the antenna

4.2. Repeat Problem 4.1 for a horizontal infinitesimal electric dipole directed along

the y-axis.

4.3. Repeat Problem 4.1 using the procedure of Example 4.5.

4.4. For Example 4.5,

(a) formulate an expression for the directivity.

(b) determine the radiated power.

(c) determine the maximum directivity by integrating the radiated power. Com-
pare with that of Problem 4.2 or any other infinitesimal dipole.

(d) determine the maximum directivity using the computer program Dipole;
compare with that of part (c).

4.5. For Problem 4.1 determine the polarization of the radiated far-zone electric

fields (Ey, E4) and normalized amplitude pattern in the following planes:
(@) ¢ =0 (b) ¢ =90° (c) 6 =90°

4.6. Repeat Problem 4.5 for the horizontal infinitesimal electric dipole of Problem

4.2, which is directed along the y-axis.
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4.7.

4.8.

4.9.

4.10.

4.11.

4.12.
4.13.
4.14.

4.15.

4.16.
4.17.

4.18.

4.19.
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For Problem 4.3, determine the polarization of the radiated far-zone fields
(Eg, Eg) in the following planes:

(@) ¢p=0" (b)¢p=90" (c)O=090°

Compare with those of Problem 4.5.

For Example 4.5, determine the polarization of the radiated far-zone fields
(Ey, Ey) in the following planes:

@¢=0" (b)p=90" (c)0=90°

Compare with those of Problem 4.6.

An infinitesimal magnetic dipole of constant current [,, and length [ is sym-
metrically placed about the origin along the z-axis. Find the

(a) spherical E- and H-field components radiated by the dipole in all space
(b) directivity of the antenna

For the infinitesimal magnetic dipole of Problem 4.9, find the far-zone fields
when the element is placed along the
(a) x-axis, (b) y-axis

An infinitesimal electric dipole is centered at the origin and lies on the x-y plane
along a line which is at an angle of 45° with respect to the x-axis. Find the
far-zone electric and magnetic fields radiated. The answer should be a function
of spherical coordinates.

Repeat Problem 4.11 for an infinitesimal magnetic dipole.
Derive (4-10a)—(4-10c) using (4-8a)—(4-9).

Derive the radiated power of (4-16) by forming the average power density,
using (4-26a)—(4-26c¢), and integrating it over a sphere of radius r.

Derive the far-zone fields of an infinitesimal electric dipole, of length / and con-
stant current Iy, using (4-4) and the procedure outlined in Section 3.6. Compare
the results with (4-26a)—(4-26c¢).

Derive the fifth term of (4-41).

For an antenna with a maximum linear dimension of D, find the inner and
outer boundaries of the Fresnel region so that the maximum phase error does
not exceed

(a) /16 rad (b) w/4rad (c) 18° (d) 15°

The boundaries of the far-field (Fraunhofer) and Fresnel regions were selected
based on a maximum phase error of 22.5°, which occur, respectively, at direc-
tions of 90° and 54.74° from the axis along the largest dimension of the antenna.
For an antenna of maximum length of 5, what do these maximum phase errors
reduce to at an angle of 30° from the axis along the length of the antenna?
Assume that the phase error in each case is totally contributed by the respec-
tive first higher order term that is being neglected in the infinite series expansion
of the distance from the source to the observation point.

The current distribution on a terminated and matched long linear (traveling
wave) antenna of length /, positioned along the z-axis and fed at its one end,
is given by

I=4a.le ™, 0<z7 <I
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where Iy is a constant. Derive expressions for the
(a) far-zone spherical electric and magnetic field components
(b) radiation power density

A line source of infinite length and constant current I is positioned along the
z-axis. Find the

(a) vector potential A
(b) cylindrical E- and H-field components radiated

+o0 efjﬂa/bzﬂz
—dt

-0 WV b2 + 12
where Hy® (ax) is the Hankel function of the second kind of order zero.

Show that (4-67) reduces to (4-68) and (4-88) to (4-89).

Hint: = —jn Hy® (Bb)

A thin linear dipole of length [ is placed symmetrically about the z-axis. Find
the far-zone spherical electric and magnetic components radiated by the dipole
whose current distribution can be approximated by

2
Iy (1 + 72’), —1/2<7 <0
(a) I.(z) =

2
10<1—7z/), 0<z <i)2
®) L(z) = Iycos (%z) . 1< <12
T
© L) =locos? (T2). —1/2=7 <172

A center-fed electric dipole of length / is attached to a balanced lossless trans-
mission line whose characteristic impedance is 50 ohms. Assuming the dipole
is resonant at the given length, find the input VSWR when

@l=x/4 ®I=Xx/2 ©I=3r/4 @I=Axr

Use the equations in the book or the computer program of this chapter. Find
the radiation efficiency of resonant linear electric dipoles of length
@I=1/50 ®)I=r/4 (@©I=1r/2 @I=x

Assume that each dipole is made out of copper [0 = 5.7 x 107 S/m], has a
radius of 107*A, and is operating at f = 10 MHz. Use the computer program
of this chapter to find the radiation resistances.

Write the far-zone electric and magnetic fields radiated by a magnetic dipole
of [ = A/2 aligned with the z-axis. Assume a sinusoidal magnetic current with
maximum value Iy,.

A resonant center-fed dipole is connected to a 50-ohm line. It is desired to
maintain the input VSWR = 2.

(a) What should the largest input resistance of the dipole be to maintain the
VSWR = 2?

(b) What should the length (in wavelengths) of the dipole be to meet the spec-
ification?

(c) What is the radiation resistance of the dipole?
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The radiation field of a particular antenna is given by:

— jkr

A . ToAre R . A
E =4y jouk sin ——— + 4y sin 6
4mr

I()A2€
2r

The values A; and A, depend on the antenna geometry. Obtain an expression
for the radiation resistance. What is the polarization of the antenna?

For a A/2 dipole placed symmetrical along the z-axis, determine the

(a) vector effective height

(b) maximum value (magnitude) of the vector effective height

(c) ratio (in percent) of the maximum value (magnitude) of the vector effective
height to its total length

(d) maximum open-circuit output voltage when a uniform plane wave with an
electric field of

E'|y_op> = —891073 volts/wavelength

impinges at broadside incidence on the dipole.

A base-station cellular communication system utilizes arrays of A/2 dipoles
as transmitting and receiving antennas. Assuming that each element is lossless
and that the input power to each of the A/2 dipoles is 1 watt, determine at
1,900 MHz and a distance of 5 km the maximum

(a) radiation intensity Specify also the units.

(b) radiation density (in watts /m?)

for each X\/2 dipole. This determines the safe level for human exposure to EM
radiation.

A A/2 dipole situated with its center at the origin radiates a time-averaged
power of 600 W at a frequency of 300 MHz. A second A/2 dipole is placed
with its center at a point P(r, 0, ¢), where r =200 m, § = 90°, ¢ = 40°. It is
oriented so that its axis is parallel to that of the transmitting antenna. What is
the available power at the terminals of the second (receiving) dipole?

A half-wave dipole is radiating into free-space. The coordinate system is defined
so that the origin is at the center of the dipole and the z-axis is aligned
with the dipole. Input power to the dipole is 100 W. Assuming an overall
efficiency of 50%, find the power density (in W/m?) at r = 500 m, # = 60°,
¢ =0°.

A small dipole of length / = 1/20 and of wire radius a = /400 is fed sym-
metrically, and it is used as a communications antenna at the lower end of the

VHF band (f = 30 MHz). The antenna is made of perfect electric conductor
(PEC). The input reactance of the dipole is given by

[In(l/2a) — 1]

%)
tan | —
A

X = —j120
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Determine the following:

(a) Input impedance of the antenna. State whether it is inductive or capacitive.

(b) Radiation efficiency (in percent).

(c) Capacitor (in farads) or inductor (in henries) that must be connected in
series with the dipole at the feed in order to resonate the element. Specify
which element is used and its value.

A half-wavelength (I = A/2) dipole is connected to a transmission line with a

characteristic impedance of 75 ohms. Determine the following:

(a) Reflection coefficient. Magnitude and phase (in degrees).

(b) VSWR.

It is now desired to resonate the dipole using, in series, an inductor or capacitor.

At a frequency of 100 MHz, determine:

(c) What kind of an element, inductor or capacitor, is needed to resonate
the dipole?

(d) What is the inductance or capacitance?

(e) The new VSWR of the resonant dipole.

A X/2 dipole is used as a radiating element while it is connected to a 50-ohm

lossless transmission line. It is desired to resonate the element at /.9 GHz by

placing in series capacitor(s) or inductor(s) (whichever are appropriate) at its
input terminals. Determine the following:

(a) VSWR inside the transmission line before the dipole is resonated [before
the capacitor(s) or inductor(s) are placed in series].

(b) Total single capacitance Cr (in farads) or inductance Ly (in henries) that
must be placed in series with the element at its input terminals in order to
resonate it. (See diagram a).

(c) Individual two capacitances C, (in farads) or inductances L, (in henries)
that must be placed in series with the element at its input terminals in order
to resonate it. We need to use two capacitors or two inductors to keep the
system balanced by placing in series one with each arm of the dipole (see
diagram b).

(d) VSWR after the element is resonated with capacitor(s) or inductor(s).

— 1 Gy j — 1 CIL

oo

50 Ohms 50 Ohms

. « | ¢,
(@) I (b) I

The input impedance of a A /2 dipole, assuming the input (feed) terminals are at

the center of the dipole, is equal to 73 + j42.5. Assuming the dipole is lossless,

find the

(a) input impedance (real and imaginary parts) assuming the input (feed) ter-
minals have been shifted to a point on the dipole which is A/8 from either
end point of the dipole length
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(b) capacitive or inductive reactance that must be placed across the new input
terminals of part (a) so that the dipole is self-resonant

(c) VSWR at the new input terminals when the self-resonant dipole of part
(b) is connected to a “twin-lead” 300-ohm line

A linear half-wavelength dipole is operating at a frequency of 1 GHz; determine
the capacitance or inductance that must be placed across (in parallel) the input
terminals of the dipole so that the antenna becomes resonant (make the total
input impedance real). What is then the VSWR of the resonant half-wavelength
dipole when it is connected to a 50-ohm line?

The field radiated by an infinitesimal electric dipole, placed along the z-axis
a distance s along the x-axis, is incident upon a waveguide aperture antenna
of dimensions a and b, mounted on an infinite ground plane, as shown in the
figure. The normalized electric field radiated by the aperture in the E-plane (x-z
plane; ¢ = 0°) is given by

E=-

. (kb
 wpblye i sin | — cos 6
)

4mr
—cos 6
2
|
z |
|
|
|
— |
O =o0 6 4 |
|
|
| |
|
b >y
|
b ; AN |
K \\ |
N |
N I
N
¢_/'\ |
dipole AN :
|
|

X

Assuming the dipole and aperture antennas are in the far field of each other,
determine the polarization loss (in dB) between the two antennas.

We are given the following information about antenna A:
(a) When A is transmitting, its radiated far-field expression for the E field is

given by:
ek ra, + jﬁ,)
E,(2) =E = /7 V/m
(2) 0 mz ( 7 /

(b) When A is receiving an incident plane wave given by:

Ei(z) =4,/ V/m

its open-circuit voltage is V) = 4¢/2° V.
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If we use the same antenna to receive a second incident plane given by:
E»(z) = 104, + 4,E/")e/*  V/m

find its received open-circuit voltage V5.

A 3-cm long dipole carries a phasor current Iy = 10e/°°A. Assuming that A =
5 cm, determine the E- and H-fields at 10 cm away from the dipole and at
0 = 45°.

The radiation resistance of a thin, lossless linear electric dipole of length [ =
0.6X is 120 ohms. What is the input resistance?

A lossless, resonant, center-fed 3A/4 linear dipole, radiating in free-space is
attached to a balanced, lossless transmission line whose characteristic impedance
is 300 ohms. Calculate the

(a) radiation resistance (referred to the current maximum)

(b) input impedance (referred to the input terminals)

(¢) VSWR on the transmission line

For parts (a) and (b) use the computer program at the end of the chapter.

Repeat Problem 4.41 for a center-fed 51 /8 dipole.

A dipole antenna, with a triangular current distribution, is used for communi-
cation with submarines at a frequency of 150 kHz. The overall length of the
dipole is 200 m, and its radius is 1 m. Assume a loss resistance of 2 ohms in
series with the radiation resistance of the antenna.

(a) Evaluate the input impedance of the antenna including the loss resistance.
The input reactance can be approximated by

_pont/20) — 1]

Xin =
tan(mwl/A)

(b) Evaluate the radiation efficiency of the antenna.
(c) Evaluate the radiation power factor of the antenna.

(d) Design a conjugate-matching network to provide a perfect match between
the antenna and a 50-ohm transmission line. Give the value of the series
reactance X and the turns ratio n of the ideal transformer.

(e) Assuming a conjugate match, evaluate the instantaneous 2:1 VSWR band-
width of the antenna.

A uniform plane wave traveling along the negative z-axis given by

X

Incident
Wave

\ crossed-dipole

y antenna

Ew = (2(3)» =J (/l\y)eﬁszo
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impinges upon an crossed-dipole antenna consisting of two identical dipoles,
one directed along the x-axis and the other directed along the y-axis, both fed
with the same amplitude. The y-directed dipole is fed with a 90° phase lead
compared to the x-directed dipole.
(a) Write an expression for the polarization unit vector of the incident wave.
(b) Write an expression for the polarization unit vector of the receiving antenna
along the + z-axis.
(c) For the incident wave, state the following:
1. Polarization (linear, circular, elliptical) and axial ratio.
2. Rotation of the polarization vector (CW, CCW).
(d) For the receiving antenna, state the following:
1. Polarization (linear, circular, elliptical) and axial ratio.
2. Rotation of the polarization vector (CW, CCW).

(e) Determine the polarization loss factor (dimensionless and in dB) between
the incident wave and the receiving antenna.

A half-wavelength (I = A/2) dipole, positioned symmetrically about the origin
along the z-axis, is used as a receiving antenna. A 300 MHz uniform plane
wave, traveling along the x-axis in the negative x direction, impinges upon the
1/2 dipole. The incident plane wave has a power density of 2y watts/m?, and
its electric field is given by

E', = (3d, + ja,)Ege™

where E is a constant. Determine the following:

(a) Polarization of the incident wave (including its axial ratio and sense of
rotation, if applicable).

(b) Polarization of the antenna toward the x-axis (including its axial ratio and
sense of direction, if applicable).

(c) Polarization losses (in dB) between the antenna and the incoming wave
(assume far-zone fields for the antenna).

(d) Maximum power (in watts) that can be delivered to a matched load con-
nected to the A/2 dipole (assume no other losses).

Derive (4-102) using (4-99).

Determine the smallest height that an infinitesimal vertical electric dipole of
! = A/50 must be placed above an electric ground plane so that its pattern has
only one null (aside from the null toward the vertical), and it occurs at 30°
from the vertical. For that height, find the directivity and radiation resistance.

A A/50 linear dipole is placed vertically at a height # = 21 above an infinite
electric ground plane. Determine the angles (in degrees) where all the nulls of
its pattern occur.

A linear infinitesimal dipole of length / and constant current is placed vertically
a distance & above an infinite electric ground plane. Find the first five smallest
heights (in ascending order) so that a null is formed (for each height) in the
far-field pattern at an angle of 60° from the vertical.
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A vertical infinitesimal linear dipole is placed a distance 7 = 31 /2 above an

infinite perfectly conducting flat ground plane. Determine the

(a) angle (in degrees from the vertical) where the array factor of the system
will achieve its maximum value

(b) angle (in degrees from the vertical) where the maximum of the toral field
will occur

(c) relative (compared to its maximum) field strength (in dB) of the total field
at the angles where the array factor of the system achieves its maximum
value (as obtained in part a).

An infinitesimal dipole of length ¢ is placed a distance s from an air-conductor
interface and at an angle of = 60° from the vertical axis, as shown in the
figure. Determine the location and direction of the image source which can be
used to account for reflections. Be very clear in indicating the location and
direction of the image. Your answer can be in the form of a very clear sketch.

It is desired to design an antenna system, which utilizes a vertical infinitesimal
dipole of length ¢ placed a height & above a flat, perfect electric conductor of
infinite extent. The design specifications require that the pattern of the array
factor of the source and its image has only one maximum, and that maximum
is pointed at an angle of 60° from the vertical. Determine (in wavelengths) the
height of the source to achieve this desired design specification.

A very short (I < A/50) vertical electric dipole is mounted on a pole a height
h above the ground, which is assumed to be flat, perfectly conducting, and of
infinite extent. The dipole is used as a transmitting antenna in a VHF (f =
50 MHz) ground-to-air communication system. In order for the communication
system transmitting antenna signal not to interfere with a nearby radio station,
it is necessary to place a null in the vertical dipole system pattern at an angle of
80° from the vertical. What should the shortest height (in meters) of the dipole
be to achieve the desired specifications?

A half-wavelength dipole is placed vertically on an infinite electric ground
plane. Assuming that the dipole is fed at its base, find the

(a) radiation impedance (referred to the current maximum)
(b) input impedance (referred to the input terminals)

(¢c) VSWR when the antenna is connected to a lossless 50-ohm transmis-
sion line.
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A vertical A/2 dipole is the radiating element in a circular array used for

over-the-horizon communication system operating at / GHz. The circular array

(center of the dipoles) is placed at a height h above the ground that is assumed

to be flat, perfect electric conducting, and infinite in extent.

(a) In order for the array not to be interfered with by another communication
system that is operating in the same frequency, it is desired to place only
one null in the elevation pattern of the array factor of a single vertical A /2
dipole at an angle of # = 30° from zenith (axis of the dipole). Determine
the smallest nonzero height h (in meters) above the ground at which the
center of the dipole must be placed to accomplish this.

(b) If the height (at its center) of the vertical dipole is 0.3 m above ground,
determine all the angles 6 from zenith (in degrees) where all the
1. null(s) of the array factor of a single dipole in the elevation plane will

be directed toward.
2. main maximum (maxima) of the array factor of a single dipole in the
elevation plane will be directed toward.

A vertical A/2 dipole antenna is used as a ground-to-air, over-the-horizon com-
munication antenna at the VHF band (f = 200 MHz). The antenna is elevated
at a height h (measured from its center/feed point) above ground (assume the
ground is flat, smooth, and perfect electric conductor extending to infinity). In
order to avoid interference with other simultaneously operating communication
systems, it is desired to place a null in the far-field amplitude pattern of the
antenna system at an angle of 60° from the vertical.

Determine the three smallest physical/nontrivial heights (in meters at
200 MHz) above the ground at which the antenna can be placed to meet the
desired pattern specifications.

A base-station cellular communication systems lossless antenna, which is placed

in a residential area of a city, has a maximum gain of /6 dB (above isotropic)

toward the residential area at 1,900 MHz. Assuming the input power to the
antenna is 8 watts, what is the

(a) maximum radiated power density (in watts /cm?) at a distance of 100 m
(line of sight) from the base station to the residential area? This will deter-
mine the safe level for human exposure to electromagnetic radiation.

(b) power (in watts) received at that point of the residential area by a cellular
telephone whose antenna is a lossless A/4 vertical monopole and whose
maximum value of the amplitude pattern is directed toward the maximum
incident power density. Assume the \/4 monopole is mounted on an infinite
ground plane.

A vertical X/4 monopole is used as the antenna on a cellular telephone operat-
ing at 1.9 GHz. Even though the monopole is mounted on a box-type cellular
telephone, for simplicity purposes, assume here that it is mounted on a per-
fectly electric conducting (PEC) ground plane. Assuming an incident maximum
power density of 10~° watts/m?, state or determine, for the monopole’s omni-
directional pattern, the

(a) maximum directivity (dimensionless and in dB). You must state the rationale

or method you are using to find the directivity.
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(b) maximum power that can be delivered to the cellular telephone receiver.
Assume no losses.

A homeowner uses a CB antenna mounted on the top of his house. Let us
assume that the operating frequency is 900 MHz and the radiated power is
1,000 watts. In order not to be exposed to a long-term microwave radiation,
there have been some standards, although controversial, developed that set the
maximum safe power density that humans can be exposed to and not be subject
to any harmful effects. Let us assume that the maximum safe power density of
long-term human RF exposure is 10~ watts /cm? or 10 watts /m?. Assuming
no losses, determine the shortest distance (in meters) from the CB antenna
you must be in order not to exceed the safe level of power density exposure.
Assume that the CB antenna is radiating into free-space and it is

(a) an isotropic radiator.

(b) a A/4 monopole mounted on an infinite PEC and radiating towards its
maximum.

Derive (4-118) using (4-116).

An infinitesimal horizontal electric dipole of length / = A /50 is placed parallel

to the y-axis a height 4 above an infinite electric ground plane.

(a) Find the smallest height 7 (excluding ~ = 0) that the antenna must be
elevated so that a null in the ¢ = 90° plane will be formed at an angle of
0 = 45° from the vertical axis.

(b) For the height of part (a), determine the (1) radiation resistance and
(2) directivity (for & = 0°) of the antenna system.

A horizontal A /50 infinitesimal dipole of constant current and length / is placed
parallel to the y-axis a distance & = 0.707A above an infinite electric ground
plane. Find all the nulls formed by the antenna system in the ¢ = 90° plane.

An infinitesimal electric dipole of length / = 1/50 is placed horizontally at a
height of & = 2) above a flat, smooth, perfect electric conducting plane which
extends to infinity. It is desired to measure its far-field radiation characteristics
(e.g. amplitude pattern, phase pattern, polarization pattern, etc.). The system
is operating at 300 MHz. What should the minimum radius (in meters) of the
circle be where the measurements should be carried out? The radius should
be measured from the origin of the coordinate system, which is taken at the
interface between the actual source and image.

An infinitesimal magnetic dipole is placed vertically a distance & above an
infinite, perfectly conducting electric ground plane. Derive the far-zone fields
radiated by the element above the ground plane.

Repeat Problem 4.64 for an electric dipole above an infinite, perfectly conduct-
ing magnetic ground plane.

Repeat Problem 4.64 for a magnetic dipole above an infinite, perfectly con-
ducting magnetic ground plane.

An infinitesimal vertical electric dipole is placed at height # above an infinite
PMC (perfect magnetic conductor) ground plane.
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(a) Find the smallest height 2 (excluding 4 = 0) to which the antenna must be
elevated so that a null is formed at an angle & = 60° from the vertical axis

(b) For the value of & found in part (a), determine
1. the directive gain of the antenna in the 8 = 45° direction

2. the radiation resistance of the antenna normalized to the intrinsic
impedance of the medium above the ground plane

Assume that the length of the antenna is / = 1 /100.

A vertical A/2 dipole, operating at 1 GHz, is placed a distance of 5 m (with
respect to the tangent at the point of reflections) above the earth. Find the
total field at a point 20 km from the source (d = 20 x 10° m), at a height of
1,000 m (with respect to the tangent) above the ground. Use a 4/3 radius earth
and assume that the electrical parameters of the earth are €, = 5,0 = 1072 S/m.

Two astronauts equipped with handheld radios land on different parts of a large
asteroid. The radios are identical and transmit 5 W average power at 300 MHz.
Assume the asteroid is a smooth sphere with physical radius of 1,000 km,
has no atmosphere, and consists of a lossless dielectric material with relative
permittivity €, = 9. Assume that the radios’ antennas can be modeled as ver-
tical infinitesimal electric dipoles. Determine the signal power (in microwatts)
received by each radio from the other, if the astronauts are separated by a range
(distance along the asteroid’s surface) of 2 km, and hold their radios vertically
at heights of 1.5 m above the asteroid’s surface.

Additional Information Required to Answer this Question: Prior to landing
on the asteroid the astronauts calibrated their radios. Separating themselves in
outer space by 10 km, the astronauts found the received signal power at each
radio from the other was 10 microwatts, when both antennas were oriented in
the same direction.

A satellite S transmits an electromagnetic wave, at 10 GHz, via its transmitting
antenna. The characteristics of the satellite-based transmitter are:

(a) The power radiated from the satellite antenna is 10 W.

(b) The distance between the satellite antenna and a point A on the earth’s
surface is 3.7 x 107 m, and

(c) The satellite transmitting antenna directivity in the direction SA is 50 dB
Ignoring ground effects,
1. Determine the magnitude of the E-field at A.
2. If the receiver at point A is a A/2 dipole, what would be the voltage
reading at the terminals of the antenna?

Derive (4-133) based on geometrical optics as presented in section 13.2 of [7].
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Loop Antennas

5.1 INTRODUCTION

Another simple, inexpensive, and very versatile antenna type is the loop antenna. Loop
antennas take many different forms such as a rectangle, square, triangle, ellipse, circle,
and many other configurations. Because of the simplicity in analysis and construction,
the circular loop is the most popular and has received the widest attention. It will be
shown that a small loop (circular or square) is equivalent to an infinitesimal magnetic
dipole whose axis is perpendicular to the plane of the loop. That is, the fields radiated
by an electrically small circular or square loop are of the same mathematical form as
those radiated by an infinitesimal magnetic dipole.

Loop antennas are usually classified into two categories, electrically small and elec-
trically large. Electrically small antennas are those whose overall length (circumference)
is usually less than about one-tenth of a wavelength (C < 1/10). However, electri-
cally large loops are those whose circumference is about a free-space wavelength
(C ~ 1A). Most of the applications of loop antennas are in the HF (3—30 MHz), VHF
(30-300 MHz), and UHF (300-3,000 MHz) bands. When used as field probes, they
find applications even in the microwave frequency range.

Loop antennas with electrically small circumferences or perimeters have small radi-
ation resistances that are usually smaller than their loss resistances. Thus they are very
poor radiators, and they are seldom employed for transmission in radio communication.
When they are used in any such application, it is usually in the receiving mode, such as
in portable radios and pagers, where antenna efficiency is not as important as the signal-
to-noise ratio. They are also used as probes for field measurements and as directional
antennas for radiowave navigation. The field pattern of electrically small antennas of
any shape (circular, elliptical, rectangular, square, etc.) is similar to that of an infinites-
imal dipole with a null perpendicular to the plane of the loop and with its maximum
along the plane of the loop. As the overall length of the loop increases and its cir-
cumference approaches one free-space wavelength, the maximum of the pattern shifts
from the plane of the loop to the axis of the loop which is perpendicular to its plane.

The radiation resistance of the loop can be increased, and made comparable to the
characteristic impedance of practical transmission lines, by increasing (electrically) its
perimeter and/or the number of turns. Another way to increase the radiation resistance

Antenna Theory: Analysis Design, Third Edition, by Constantine A. Balanis
ISBN 0-471-66782-X Copyright © 2005 John Wiley & Sons, Inc.
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(a) single element (b) array of eight elements

Figure 5.1 Commercial loop antenna as a single vertical element and in the form of an
eight-element linear array. (Courtesy: TCI, A Dielectric Company).

of the loop is to insert, within its circumference or perimeter, a ferrite core of very
high permeability which will raise the magnetic field intensity and hence the radiation
resistance. This forms the so-called ferrite loop.

Electrically large loops are used primarily in directional arrays, such as in helical
antennas (see Section 10.3.1), Yagi-Uda arrays (see Section 10.3.3), quad arrays (see
Section 10.3.4), and so on. For these and other similar applications, the maximum
radiation is directed toward the axis of the loop forming an end-fire antenna. To achieve
such directional pattern characteristics, the circumference (perimeter) of the loop should
be about one free-space wavelength. The proper phasing between turns enhances the
overall directional properties.

Loop antennas can be used as single elements, as shown in Figure 5.1(a), whose
plane of its area is perpendicular to the ground. The relative orientation of the loop can
be in other directions, including its plane being parallel relative to the ground. Thus, its
mounting orientation will determine its radiation characteristics relative to the ground.
Loops are also used in arrays of various forms. The particular array configuration
will determine its overall pattern and radiation characteristics. One form of arraying is
shown in Figure 5.1(b), where eight loops of Figure 5.1(a) are placed to form a linear
array of eight vertical elements.

5.2 SMALL CIRCULAR LOOP

The most convenient geometrical arrangement for the field analysis of a loop antenna
is to position the antenna symmetrically on the x-y plane, at z = 0, as shown in
Figure 5.2(a). The wire is assumed to be very thin and the current spatial distribution
is given by

1y = Iy (5-1)

where I is a constant. Although this type of current distribution is accurate only for
a loop antenna with a very small circumference, a more complex distribution makes
the mathematical formulation quite cumbersome.
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5.2.1 Radiated Fields

To find the fields radiated by the loop, the same procedure is followed as for the linear
dipole. The potential function A given by (3-53) as

—jkR
dr (5-2)

c
Ax,y,z) = % / | HES
C

is first evaluated. Referring to Figure 5.2(a), R is the distance from any point on the
loop to the observation point and d!’ is an infinitesimal section of the loop antenna. In
general, the current spatial distribution I,(x’, y’, z’) can be written as

Ie(x/’ y/v Z/) = ﬁxlx(x/v y/7 Z/) + ﬁyly(x/7 y/7 Z/) + ﬁZIZ('x/’ y/’ Z/) (5_3)

—

acosy =a(, .-a,)=
a(sin 0 cos ¢' cos ¢
+ sin 0 sin ¢’ sin ¢)

(b) Geometry for far-field observations

Figure 5.2 Geometrical arrangement for loop antenna analysis.
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whose form is more convenient for linear geometries. For the circular-loop antenna of
Figure 5.2(a), whose current is directed along a circular path, it would be more conve-
nient to write the rectangular current components of (5-3) in terms of the cylindrical
components using the transformation (see Appendix VII)

I, cos¢/ —sing’ 0] 1,
I, | = | sing’ cos¢’ 0 Iy (5-4)
I, 0 0 1 I,

which when expanded can be written as

I, =1,cos¢’ — I, sing’
Iy, = I,sin¢’ + I cos ¢’ (5-5)
I, =1,

Since the radiated fields are usually determined in spherical components, the rect-
angular unit vectors of (5-3) are transformed to spherical unit vectors using the trans-
formation matrix given by (4-5). That is,

4, = 4, sin6 cos ¢ + 8y cosd cosp — 4, sinp
4, = 4,sin@sin¢g + 4y cos O sing + 4, cos ¢ (5-6)
4, = a,coso — Ay sin 6

Substituting (5-5) and (5-6) in (5-3) reduces it to
I, = 4,[I,sinf cos(¢p — ¢') + I sin @ sin(¢p — ¢') + I, cos 0]
+8g[1, cosb cos(¢p — @) + Iy cos O sin(p — ¢') — I, sin 6]
+8ay[—1,sin(¢p — ¢') + Iy cos(¢p — ¢')] (5-7)
It should be emphasized that the source coordinates are designated as primed (o', ¢, 7')

and the observation coordinates as unprimed (r, 6, ¢). For the circular loop, the current
is flowing in the ¢ direction (/4) so that (5-7) reduces to

I, = &,1,sin0sin(¢p — @') + g1, cos O sin(¢p — ¢") + 441, cos(¢p — ¢') (5-8)

The distance R, from any point on the loop to the observation point, can be written as

R=v(x —x)2 4@y —y)P2+(z—12)> (5-9)
Since

X = rsinf cos ¢
y = rsinfsin¢
z=rcosf
ey 4= (5-10)

x' =acos¢’
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v =asing¢’
=0

x/2 + y/2 +Z/2 — a2

(5-9) reduces to

R = /r2+a?—2arsinf cos(¢p — ¢') (5-11)
By referring to Figure 5.2(a), the differential element length is given by
dl' =ad¢’ (5-12)

Using (5-8), (5-11), and (5-12), the ¢-component of (5-2) can be written as

am 2 efjk\/erraszar sin @ cos(¢p—¢’)

_au , . do’ 5-13
& 4 Jy ¢ cos(¢p — ¢ )\/},2 + a2 — 2arsinf cos(¢p — @) ¢ ( :

Since the spatial current I as given by (5-1) is constant, the field radiated by the
loop will not be a function of the observation angle ¢. Thus any observation angle ¢
can be chosen; for simplicity ¢ = 0. Therefore (5-13) reduces to

ka2 a2— ; ,
_ aMIO /‘27‘[ COS¢/ e Jjka/r*+a*—2ar sinf cos ¢
0

Ay = de¢’ (5-14)
*T 4n Vrt + a2 —2ar sinf cos ¢’

The integration of (5-14), for very thin circular loop of any radius, can be carried out
and is represented by a complex infinite series whose real part contains complete elliptic
integrals of the first and second kind while the imaginary part consists of elementary
functions [1]. This treatment is only valid provided the observation distance is greater
than the radius of the loop (r > a). Another very detailed and systematic treatment
is that of [2], [3] which is valid for any observation distance (r < a,r > a) except
when the observation point is on the loop itself (r = a, 6 = 7/2). The development
in [2], [3] has been applied to circular loops whose current distribution is uniform,
cosinusoidal, and Fourier cosine series. Asymptotic expansions have been presented
in [2], [3] to find simplified and approximate forms for far-field observations.

Both treatments, [1]—[3], are too complex to be presented here. The reader is
referred to the literature. In this chapter a method will be presented that approximates
the integration of (5-14). For small loops, the function

e—jk«/r2+a2—2ar sin 6 cos ¢’
Vr2 +a? — 2arsinf cos ¢’

f (5-15)

which is part of the integrand of (5-14), can be expanded in a Maclaurin series in
a using

f =10+ f(0a+ lf”(O)a2 +-- 4 ¥f("_l)(0)a"_l +--- (5-15a)
2! (n—1n!
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where f/(0) = df/dala—o, f"(0) = 3% f/da*|.—o, and so forth. Taking into account
only the first two terms of (5-15a), or

—Jjkr
o) ="2 (5-15b)
r
ik 1 .
£(0) = (’— 4 —2> ¢ sin 6 cos ¢’ (5-15¢)
roor
1 ik 1 )
[~ |:— +a <J— + —2) sin @ cosd)/] eIk (5-15d)
r r r
reduces (5-14) to
I 2 1 ik 1 .
Ap artfo / cos ¢’ |:— +a (J— + —2) sin @ cos¢’] eI dey
4 Jo r r r
a’uly _ o [Tk Iy .
A¢ x>~ Te J (T + r_2> sin & (5-16)
In a similar manner, the r- and 6-components of (5-2) can be written as
1 2 1 ik 1 .
A, ~ 2RI sin@/ sing' | = +a (25 + = )sin6cos¢’ | e /¥ dp’  (5-16a)
47 0 r roor?

Cl,LLI() m . ’ 1 Jk 1 - ’ —jkr ’
Ag >~ — cosf sing' | —+a|=—+ — )sinOcos¢’ | e’ d¢’ (5-16b)
4 0 r rooor?

which when integrated reduce to zero. Thus

A Pl _y, [ik 17
A >~a,A, =4, 4 ! |:r +3 sin 6
kua®Iysin 6 1 .
=8y j————— |1+ — | ¥ 5-17
2 4r + jkr ¢ ( )
Substituting (5-17) into (3-2a) reduces the magnetic field components to
o ka®Iycos6 1+ 1 ik 518
r = _— - e -
I7 o0 jkr ( 2)
(ka)*Iysin6 1 1 o
H=—————|1+— — T 5-18b
’ ar LTl (5-18b)
Hy =0 (5-18¢c)
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Using (3-15) or (3-10) with J = 0, the corresponding electric-field components can be
written as

E,=Ey=0 (5-19a)
(ka)?I,sin @ 1 ik

Ey=n—"t 0277 |14 | ik 5-19b

o =1 4r + jkr ¢ ( )

5.2.2 Small Loop and Infinitesimal Magnetic Dipole

A comparison of (5-18a)—(5-19b) with those of the infinitesimal magnetic dipole indi-
cates that they have similar forms. In fact, the electric and magnetic field components
of an infinitesimal magnetic dipole of length / and constant “magnetic” spatial current
I,, are given by

E, =Ey=Hy=0 (5-20a)
kl,lsin6 1 :
Ey=—j—2— |14+ —|e/* 5-20b
¢ J dmr |: + jkr:|e ( )
Il 0 1 )
H = cosO [ R (5-20¢)
2 nr? jkr
g Klndsinf [ 1 1 (5200
= _— _— = e -
"= gy jkr  (kr)?

These can be obtained, using duality, from the fields of an infinitesimal electric dipole,
(4-8a)—(4-10c). When (5-20a)—(5-20d) are compared with (5-18a)—(5-19b), they indi-
cate that a magnetic dipole of magnetic moment I,,l is equivalent to a small electric
loop of radius a and constant electric current Iy provided that

Iyl = jSopl (5-21)

where S = ma? (area of the loop). Thus, for analysis purposes, the small electric loop
can be replaced by a small linear magnetic dipole of constant current. The geometrical
equivalence is illustrated in Figure 5.2(a) where the magnetic dipole is directed along
the z-axis which is also perpendicular to the plane of the loop.

5.2.3 Power Density and Radiation Resistance

The fields radiated by a small loop, as given by (5-18a)—(5-19b), are valid everywhere
except at the origin. As was discussed in Section 4.1 for the infinitesimal dipole, the
power in the region very close to the antenna (near field, kr < 1) is predominantly
reactive and in the far field (kr >> 1) is predominantly real. To illustrate this for the
loop, the complex power density

W = 1(E x H") = 1[(44Ey) x A H} + 8o H})]
= N(—4,E4H; + 8 E,H)) (5-22)
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is first formed. When (5-22) is integrated over a closed sphere, only its radial component
given by

4 . 2
(ka) ,sin” 6 |:l 1 i| (5-222)

W, = I '
13y o= M ey

contributes to the complex power P,. Thus

P ﬂst (k“)4|1|2/2ﬂ/n1+'1 sin® 6 d0 do (5-23)
r: . = —_— 1‘ -
T o Jo J(kl’)3
S

which reduces to

_ (=~ 41712 1
P =n (12) (ka)* 1ol [1 +J (kr)3] (5-23a)

and whose real part is equal to
T 4y 12
Paa =1 (55) (ka)* 1o (5-23b)

For small values of kr(kr << 1), the second term within the brackets of (5-23a)
is dominant which makes the power mainly reactive. In the far field (kr > 1), the
second term within the brackets diminishes, which makes the power real. A comparison
between (5-23a) with (4-14) indicates a difference in sign between the terms within the
brackets. Whereas for the infinitesimal dipole the radial power density in the near field
is capacitive, for the small loop it is inductive. This is illustrated in Figure 4.21 for the
dipole and in Figures 5.13 and 5.20 for the loop.

The radiation resistance of the loop is found by equating (5-23b) to |Io|*R, /2. Doing
this, the radiation resistance can be written as

2 4 2
(T 202 = 0 (KSY 002 (€ ~ 5= -
R,_n(6)(ka) =3 <x =207* () =31171 (5 (5-24)

where § = mwa? is the area and C = 2ma is the circumference of the loop. The last
form of (5-24) holds for loops of other configurations, such as rectangular, elliptical,
etc. (See Problem 5.30).

The radiation resistance as given by (5-24) is only for a single-turn loop. If the loop
antenna has N turns wound so that the magnetic field passes through all the loops, the
radiation resistance is equal to that of single turn multiplied by N2. That is,

2\ (kS\? c\* 2
Ro=n|—= (=) N =207+ ) N?=3L17TIN*( (5-24a)
3 )\ A I

Even though the radiation resistance of a single-turn loop may be small, the overall
value can be increased by including many turns. This is a very desirable and practical
mechanism that is not available for the infinitesimal dipole.
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Example 5.1

Find the radiation resistance of a single-turn and an eight-turn small circular loop. The radius
of the loop is A/25 and the medium is free-space.

Solution:
A\ wa?
S=na’=n(—) ===
25 625

2w 272

2
R, (singl =12 —|{—) =0. h
(single turn) (074 ( 3 ) (625) 0.788 ohms

R, (8 turns) = 0.788(8)% = 50.43 ohms

The radiation and loss resistances of an antenna determine the radiation efficiency,
as defined by (2-90). The loss resistance of a single-turn small loop is, in general,
much larger than its radiation resistance; thus the corresponding radiation efficiencies
are very low and depend on the loss resistance. To increase the radiation efficiency,
multiturn loops are often employed. However, because the current distribution in a
multiturn loop is quite complex, great confidence has not yet been placed in analytical
methods for determining the radiation efficiency. Therefore greater reliance has been
placed on experimental procedures. Two experimental techniques that can be used to
measure the radiation efficiency of a small multiturn loop are those that are usually
referred to as the Wheeler method and the Q method [4].

Usually it is assumed that the loss resistance of a small loop is the same as that
of a straight wire whose length is equal to the circumference of the loop, and it is
computed using (2-90b). Although this assumption is adequate for single-turn loops,
it is not valid for multiturn loops. In a multiturn loop, the current is not uniformly
distributed around the wire but depends on the skin and proximity effects [5]. In fact,
for close spacings between turns, the contribution to the loss resistance due to the
proximity effect can be larger than that due to the skin effect.

The total ohmic resistance for an N-turn circular-loop antenna with loop radius a,
wire radius b, and loop separation 2¢, shown in Figure 5.3(a) is given by [6]

Na (R
Ropmic = — Ry | == + 1 5-25
h p (Ro + ) (5-25)

where

[w
R, = % = surface impedance of conductor
o

R, = ohmic resistance per unit length due to proximity effect

NR,
2nh

The ratio of R,/Ry has been computed [6] as a function of the spacing c¢/b for loops
with 2 < N < 8 and it is shown plotted in Figure 5.3(b). It is evident that for close
spacing the ohmic resistance is twice as large as that in the absence of the proximity
effect (R,/Ry = 0).

Ry = = ohmic skin effect resistance per unit length (ohms/m)
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2b

(a) N~-turn circular loop

2.
Sr N=38§
7 N = number of wi
20k = number of wires
P R, = added resistance due to proximity effect

R = resistance neglecting proximity effect

1.0 1.5 2.0 3.0 4.0 5.0
Spacing ¢/b c
(b) Ohmic resistance due to proximity (after G. N. Smith)

Figure 5.3 N-turn circular loop and ohmic resistance due to proximity effect. (source: G.
S. Smith, “Radiation Efficiency of Electrically Small Multiturn Loop Antennas,” IEEE Trans.
Antennas Propagat., Vol. AP-20, No. 5, September, pp. 656—657. 1972 © 1972 IEEE).

Example 5.2

Find the radiation efficiency of a single-turn and an eight-turn small circular loop at f =
100 MHz. The radius of the loop is 1 /25, the radius of the wire is 10—, and the turns are
spaced 4 x 10~*X apart. Assume the wire is copper with a conductivity of 5.7 x 107(S/m)
and the antenna is radiating into free-space.

Solution: From Example 5.1

R, (single turn) = 0.788 ohms
R, (8 turns) = 50.43 ohms
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The loss resistance for a single turn is given, according to (2-90b), by

Ro—p. @ foro 1 7(10%) (4 x 1077)
L= =5V 20— 250104 5.7 x 107

= 1.053 ohms

and the radiation efficiency, according to (2-90), by

0.788
= ——— = 0.428 = 42.8%
€d = 0788 + 1.053 ¢
From Figure 5.3(b)
Rl’
=2 —0.38
0
and from (5-25)
8 7(10%)(@4r x 1077)
R = R ic = 1.38 = 11.62
b Tohmic 25(104)/ STx 10 D)
Thus
50.43
ld = ———"  —0.813 = 81.3%
50.43 + 11.62

5.2.4 Near-Field (kr « 1) Region

The expressions for the fields, as given by (5-18a)—(5-19b), can be simplified if the
observations are made in the near field (kr < 1). As for the infinitesimal dipole, the
predominant term in each expression for the field in the near-zone region is the last
one within the parentheses of (5-18a)—(5-19b). Thus for kr < 1

2] —jkr
H, ~ % cos 0 (5-262)
r
aZI efjkr )
Hy ~ 721"3 sin kr < 1 (5-26b)
H¢ = Er = E9 =0 (5-26C)
Zkl —jkr
Ey~ — j% sin® (5-26d)

The two H-field components are in time-phase. However, they are in time quadra-
ture with those of the electric field. This indicates that the average power (real power)
is zero, as is for the infinitesimal electric dipole. The condition of kr < 1 can be
satisfied at moderate distances away from the antenna provided the frequency of
operation is very low. The fields of (5-26a)—(5-26d) are usually referred to as quasi-
stationary.
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5.2.5 Far-Field (kr » 1) Region

The other space of interest where the fields can be approximated is the far-field (kr >
1) region. In contrast to the near field, the dominant term in (5-18a)—(5-19b) for
kr >> 1 is the first one within the parentheses. Since for kr > 1 the H, component will
be inversely proportional to r*> whereas Hy will be inversely proportional to r. For
large values of kr(kr >> 1), the H, component will be small compared to Hy. Thus it
can be assumed that it is approximately equal to zero. Therefore for kr > 1,

k2 21 — jkr SI — jkr
Hy ~ _rate 7 sinf = _ofe T sin @ (5-27a)
4r A2r
) . kr > 1
B K2a*Ipe 70 P aSlye /% 0
~p———sinf = n————sin

0=y LENPER (5-27b)

H, ~ H¢ =E, =Ey=0 (5-27c)

where § = ma? is the geometrical area of the loop.
Forming the ratio of —E,/Hy, the wave impedance can be written as

Zy=——-1 (5-28)

where
Z,, = wave impedance
n = intrinsic impedance

As for the infinitesimal dipole, the E- and H-field components of the loop in the far-field
(kr > 1) region are perpendicular to each other and transverse to the direction of prop-
agation. They form a Transverse Electro Magnetic (TEM) field whose wave impedance
is equal to the intrinsic impedance of the medium. Equations (5-27a)— (5-27¢) can also
be derived using the procedure outlined and relationships developed in Section 3.6.
This is left as an exercise to the reader (Problem 5.9).

5.2.6 Radiation Intensity and Directivity

The real power P,y radiated by the loop was found in Section 5.2.3 and is given by
(5-23b). The same expression can be obtained by forming the average power density,
using (5-27a)—(5-27c¢), and integrating it over a closed sphere of radius r. This is left
as an exercise to the reader (Problem 5.8). Associated with the radiated power Py, is
an average power density W,,. It has only a radial component W, which is related to
the radiation intensity U by

2 n (k*a® ? 22 r? 2
U=rw, = A tre |Io|” sin” O = %|E¢(r,6,¢)| (5-29)

and it conforms to (2-12a). The normalized pattern of the loop, as given by (5-29), is
identical to that of the infinitesimal dipole shown in Figure 4.3. The maximum value



SMALL CIRCULAR LOOP 243

occurs at € = m/2, and it is given by

2
n (k*a®
Unax = U|9=n/2 = 5 <T) |IO|2 (5'30)

Using (5-30) and (5-23b), the directivity of the loop can be written as

Unx 3
D = 4 = — -
0 1 Py > (5-31)
and its maximum effective area as
Ao = A Dy = 332 5-32
em — 4 0 — 8 ( - )

It is observed that the directivity, and as a result the maximum effective area, of a small
loop is the same as that of an infinitesimal electric dipole. This should be expected
since their patterns are identical.

The far-field expressions for a small loop, as given by (5-27a)—(5-27c), will be
obtained by another procedure in the next section. In that section a loop of any radius
but of constant current will be analyzed. The small loop far-field expressions will then
be obtained as a special case of that problem.

Example 5.3

The radius of a small loop of constant current is A/25. Find the physical area of the loop
and compare it with its maximum effective aperture.
Solution:

A\ a2
S (physical) = ma®> = 7 <E> = % =5.03 x 107322

322 .
Ao = — =0.1194
8
Aem 0.11922

= _——— =23.66
S 5.03 x 10-322

Electrically the loop is about 24 times larger than its physical size, which should not be
surprising. To be effective, a small loop must be larger electrically than its physical size.

5.2.7 Equivalent Circuit

A small loop is primarily inductive, and it can be represented by a lumped element
equivalent circuit similar to those of Figure 2.28.
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Figure 5.4 Equivalent circuit of loop antenna in transmitting mode.

A. Transmitting Mode

The equivalent circuit for its input impedance when the loop is used as a transmit-
ting antenna is that shown in Figure 5.4. This is similar to the equivalent circuit of
Figure 2.28(b). Therefore its input impedance Z;, is represented by

Zin =Ry +jXipn =R+ R) + j(X4 + X)) (5-33)

where
R, = radiation resistance as given by (5-24)
R; = loss resistance of loop conductor
X 4 = external inductive reactance of loop antenna = wlL s
X; = internal high-frequency reactance of loop conductor = wL;

In Figure 5.4 the capacitor C, is used in parallel to (5-33) to resonate the antenna;
it can also be used to represent distributed stray capacitances. In order to determine
the capacitance of C, at resonance, it is easier to represent (5-33) by its equivalent
admittance Y;, of

1 1

Yin = Gin + jBin = o— = ————— 5-34

+ / Zin Rin + JXin ( )
where

Gin = —n 5-34
in = m (5-34a)

By = Xin 5-34b
in — _m ( - )

At resonance, the susceptance B, of the capacitor C, must be chosen to eliminate the
imaginary part B;, of (5-34) given by (5-34b). This is accomplished by choosing C,
according to

Br Bin 1 Xin
C, = =— = (5-35)
2 f 2nf  2nf R2 + X2
Under resonance the input impedance Z, is then equal to
, , 1 R, + X X2,
Z, =R, = =0 __ " _R, + (5-36)

in
Gin R in Rin
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The loss resistance R; of the loop conductor can be computed using techniques
illustrated in Example 5.2. The inductive reactance X 4 of the loop is computed using
the inductance L, [7] of:

Circular loop of radius a and wire radius b:

LA = Moa |:11’1 (%) — 2] (5—373)

Square loop with sides a and wire radius b:
a a

Ly=2us [m (—) _ 0.774] (5-37b)
b4 b

The internal reactance of the loop conductor X; can be found using the internal induc-
tance L; of the loop which for a single turn can be approximated by

l
Li=— 2K _ @ jot (5-38)
wPV 20 wb\ 20

where [ is the length and P is the perimeter (circumference) of the wire of the loop.

B. Receiving Mode

The loop antenna is often used as a receiving antenna or as a probe to measure magnetic
flux density. Therefore when a plane wave impinges upon it, as shown in Figure 5.5(a),
an open-circuit voltage develops across its terminals. This open-circuit voltage is related
according to (2-93) to its vector effective length and incident electric field. This open-
circuit voltage is proportional to the incident magnetic flux density Bé, which is normal

0

in
+ | +
VL ZL Vor
)7 - —
I

2b

2

(b) Thevenin equivalent

(a) Plane wave incident on a receiving loop (G.S. Smith, "Loop Antennas,"
Copyright © 1984, McGraw-Hill, Inc. Permission by McGraw-Hill, Inc.)

Figure 5.5 Loop antenna and its equivalent in receiving mode.



246 LOOP ANTENNAS

to the plane of the loop. Assuming the incident field is uniform over the plane of the
loop, the open-circuit voltage for a single-turn loop can be written as [8]

Voe = joma’B! (5-39)

Defining in Figure 5.5(a) the plane of incidence as the plane formed by the z axis and
radical vector, then the open-circuit voltage of (5-39) can be related to the magnitude
of the incident magnetic and electric fields by

Voe = joma*uoH' cos i sin6; = jkomwa®E' cos y; sin 6; (5-39a)

where 1; is the angle between the direction of the magnetic field of the incident plane
wave and the plane of incidence, as shown in Figure 5.5(a).

Since the open-circuit voltage is also related to the vector effective length by (2-93),
then the effective length for a single-turn loop can be written as

L, =44l = ﬁ¢jkona2 cos ¥; sinf; = 4, jkoS cos y; sin 6; (5-40)

where S is the area of the loop. The factor cosy; sin6; is introduced because the
open-circuit voltage is proportional to the magnetic flux density component Bé which
is normal to the plane of the loop.

When a load impedance Z; is connected to the output terminals of the loop as
shown in Figure 5.5(b), the voltage V;, across the load impedance Z; is related to the
input impedance Z;, of Figure 5.5(b) and the open-circuit voltage of (5-39a) by

z
vV, =V L

e ————— (5-41)
ZI{n +Z

5.3 CIRCULAR LOOP OF CONSTANT CURRENT

Let us now reconsider the loop antenna of Figure 5.2(a) but with a radius that may not
necessarily be small. The current in the loop will again be assumed to be constant, as
given by (5-1). For this current distribution, the vector potential is given by (5-14). The
integration in (5-14) is quite complex, as is indicated right after (5-14). However, if the
observation are restricted in the far-field (v >> a) region, the small radius approximation
is not needed to simplify the integration of (5-14).

Although the uniform current distribution along the perimeter of the loop is only
valid provided the circumference is less than about 0.1 (radius less than about 0.0161.),
the procedure developed here for a constant current can be followed to find the far-zone
fields of any size loop with not necessarily uniform current.

5.3.1 Radiated Fields

To find the fields in the far-field region, the distance R can be approximated by

R = \/r2 +a? — 2ar sin 6 cos ¢’ ~ \/r2 —2arsinfcos¢’ for r > a (5-42)
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which can be reduced, using the binomial expansion, to

2a
R:r\/l — —sinfcos¢’ =r —asinb cos¢’ =r — acos Yy
r

5-43
for phase terms ( )
R>~r for amplitude terms
since
cos Yo = &), + A,]p—0 = (&, cos¢’ + 4, sin¢)
(4, sinf cos ¢ + 4, sinf sing + &, cosH)|g—o
= siné cos ¢’ (5-43a)

The geometrical relation between R and r, for any observation angle ¢ in the far-
field region, is shown in Figure 5.2(b). For observations at ¢ = 0, it simplifies to that
given by (5-43) and shown in Figure 5.6. Thus (5-14) can be simplified to

aplye /%"

2.
/ i cos ¢/e+jka sin 6 cos ¢’ dd)/ (5_44)
4y 0

and it can be separated into two terms as

auloefjkr b4 ) ) , 2 ) ) ,
A¢ ~ [/ cos ¢/e+]ku sin 6 cos ¢ d¢/ + / cos ¢/e+]ka sin 6 cos ¢ d¢/:|
0 b

4rr
(5-45)
The second term within the brackets can be rewritten by making a change of variable
of the form
¢ =9+ (5-46)

AA .
acos Yo =a(a, - a,)le=o =asin 6 cos ¢’

Figure 5.6 Geometry for far-field analysis of a loop antenna.
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Thus (5-45) can also be written as

aplpe 7% T ka sin 6 cos ¢’ i 1 —jkasing cos "
A¢ ~ / COS¢/e+j asinf cos ¢ dd)/ _/ COS¢ e /kasin cos ¢ dd)//
0 0

drr
(5-47)
Each of the integrals in (5-47) can be integrated by the formula (see Appendix V)

7" g, (2) = / i cos(ng)e i ? dg (5-48)
0

where J,(z) is the Bessel function of the first kind of order n. Using (5-48) reduces
(5-47) to

I —jkr
Ay %[nj]l(ka §in0) — 7 J; (—ka sin )] (5-49)
Tr

The Bessel function of the first kind and order n is defined (see Appendix V) by

the infinite series
o

_1\ym n+2m
J,(2) = Z M (5-50)
m=0

m!(m +n)!
By a simple substitution into (5-50), it can be shown that
Jn(=2) = (=1)"J,(2) (5-51)

which for n = 1 is equal to
Ji(=2) = =Ji(2) (5-52)

Using (5-52) we can write (5-49) as

I —jkr
Ap = j%h (ka sin®) (5-53)
r

The next step is to find the E- and H-fields associated with the vector potential of
(5-53). Since (5-53) is only valid for far-field observations, the procedure outlined in
Section 3.6 can be used. The vector potential A, as given by (5-53), is of the form

suggested by (3-56). That is, the r variations are separable from those of 6 and ¢.
Therefore according to (3-58a)—(3-58b) and (5-53)

E, ~Es=0 (5-54a)
aknloe_jkr .

» TJI (ka sin @) (5-54b)

H ~Hy=0 (5-54¢)

Ey, ak Iye= /%"

Hy >~
o n 2r

Ji(ka sin9) (5-54d)
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5.3.2 Power Density, Radiation Intensity, Radiation Resistance, and
Directivity

The next objective for this problem will be to find the power density, radiation intensity,
radiation resistance, and directivity. To do this, the time-average power density is
formed. That is,

1 1 1
Way = SRe[E x H] = SReldyEy x AgH; ] = ﬁr2—|E¢|2 (5-55)
n
which can be written using (5-54b) as

. (@)Ll

W, =4, W, =4, —Ji*(ka sin6) (5-56)
8nr
with the radiation intensity given by
2 I 2
U=rW, = (a“";ﬂjﬁ(m sin0) (5-57)
n

The radiation patterns for a = A/10, A/5, and A/2 are shown in Figure 5.7. These
patterns indicate that the field radiated by the loop along its axis (8 = 0°) is zero. Also
the shape of these patterns is similar to that of a linear dipole with / < A (a figure-eight
shape). As the radius a increases beyond 0.5A, the field intensity along the plane of
the loop (0 = 90°) diminishes and eventually it forms a null when a >~ 0.61A. This
is left as an exercise to the reader for verification (Prob. 5.18). Beyond a = 0.61A,
the radiation along the plane of the loop begins to intensify and the pattern attains a
multilobe form.

Three-dimensional patterns for loop circumferences of C = 0.1A and 5A, assuming
uniform current distribution, are shown in Figure 5.8. It is apparent that for the 0.1A
circumference the pattern is basically that of figure eight (sin ), while for the 5A loop
it exhibits multiple lobes. The multiple lobes in a large loop begin to form when the
circumference exceeds about 3.83\ (radius exceeds about 0.611); see Problem 5.18.

The patterns represented by (5-57) (some of them are illustrated in Figure 5.7)
assume that the current distribution, no matter what the loop size, is constant. This
is not a valid assumption if the loop circumference C(C = 2ma) exceeds about 0.1A
(i.e., a > 0.016A) [9]. For radii much greater than about 0.016, the current variation
along the circumference of the loop begins to attain a distribution that is best repre-
sented by a Fourier series [8]. Although a most common assumption is that the current
distribution is nearly cosinusoidal, it is not satisfactory particularly near the driving
point of the antenna.

A uniform and nonuniform in-phase current distribution can be attained on a loop
antenna even if the radius is large. To accomplish this, the loop is subdivided into
sections, with each section/arc of the loop fed with a different feed line; all feed lines
are typically fed from a common feed source. Such an arrangement, although more
complex, can approximate either uniform or nonuniform in-phase current distribution.

It has been shown [10] that when the circumference of the loop is about one wave-
length (C =~ 1), its maximum radiation based on a nonuniform current distribution is
along its axis (9 = 0°, 180°) which is perpendicular to the plane of the loop. This
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Figure 5.7 Elevation plane amplitude patterns for a circular loop of constant current
(a =0.1x,0.24, and 0.51).

feature of the loop antenna has been utilized to design Yagi-Uda arrays whose basic
elements (feed, directors, and reflectors) are circular loops [11]-[14]. Because of its
many applications, the one-wavelength circumference circular-loop antenna is consid-
ered as fundamental as a half-wavelength dipole.

The radiated power can be written using (5-56) as

2 1 2 T
Prad = // Wy - ds = W/ Ji2(ka sin 0) sin 6 d6 (5-58)
n 0
S

The integral in (5-58) can be rewritten [15] as

T 1 2ka
/ Ji2(kasin@) sin@ df = — / B (x)dx (5-59)
0 ka Jo
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Figure 5.8 Three-dimensional amplitude patterns of a circular loop with constant current
distribution.

The evaluation of the integral of (5-59) has been the subject of recent papers
[16]-[20]. In these references, along with some additional corrections, the integral
of (5-59)

1 4 1 2ka
0} (ka) = - / J2(kasin0) sin6 df = —— / Jo(x) dx (5-59a)
2 Jo 2ka J,
can be represented by a series of Bessel functions
1 o0
W (ka) = = 3" Jany3(2ka) (5-59b)
m=0

where J,,(x) is the Bessel function of the first kind, mth order. This is a highly
convergent series (typically no more than 2ka terms are necessary), and its numerical
evaluation is very efficient. Approximations to (5-59) can be made depending upon the
values of the upper limit (large or small radii of the loop).
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A. Large Loop Approximation (a > A/2)
To evaluate (5-59), the first approximation will be to assume that the radius of the loop
is large (a > X1 /2). For that case, the integral in (5-59) can be approximated by

T 1 2ka 1
/ Ji2(ka sin0) sinf df = — / Jr(x)dx ~ — (5-60)
0 ka 0 ka

and (5-58) by
o Taon? 561
rad — 47](/(61)

The maximum radiation intensity occurs when ka sin6 = 1.84 so that

(aww)?|Io|? . (awp)*| I
Ulmax = ~————— Ji?(ka sin ) lxasingi 84 = —————(0.582)>  (5-62)
8n 8n
Thus
2P, 2 2 C
R = 2P _ 2mlaon)” (E) ka = 6072 (ka) = 6072 = (5-63a)
|Io|? 4n(ka) 2 A
Ui ka(0.582)> c
Dy = 4 =2 g K (0:382)7 2ka(0.582)2 = 0.677 ( = (5-63b)
Prad 2 A
22 22 C 5
Agn = =Dy = 10677 = ) | =5.39 x 1072AC (5-63¢)
47 47 A

where C (circumference) = 2wa and n ~ 1207.

B. Intermediate Loop Approximation (A/6m <a < A/2)

If the radius of the loop is A/(67) = 0.053A < a < A/2, the integral of (5-59) for
Q{l(ka) is approximated by (5-59a) and (5-59b), and the radiation resistance and
directivity can be expressed, respectively, as

_ 2Prad
|Io|?
4nUmax  Fi(ka)

= n(ka)? Q') (ka) (5-64a)

r

Do — — (5-64b)
T P 0Wika)

where

J12(1.84()) = (0.582)?> = 0.339 (5-64c¢)
. ka > 1.840 (a > 0.293))
F, (ka = J2(kasin® X =
(ka) i ( ) ma J2(ka)

ka < 1.840 (a < 0.293)) (5-64d)

C. Small Loop Approximation (a < L/61)

If the radius of the loop is small (@ < A/6m), the expressions for the fields as given
by (5-54a)—(5-54d) can be simplified. To do this, the Bessel function J;(ka sin6) is
expanded, by the definition of (5-50), in an infinite series of the form (see Appendix V)

Jy(kasin@) = 3 (kasin®) — L (kasin6)’ + - (5-65)
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For small values of ka(ka < %), (5-65) can be approximated by its first term, or

ka sin 6

Ji(kasin@) ~ -2 52‘“ (5-65a)
Thus (5-54a)—(5-54d) can be written as
E, ~Ey=0 (5-66a)
2 kI — jkr 2k2I — jkr
Ey >~ 4 ORENe T sinf = n% sin 6 (5-66b)
4r ar a < AJ6m

H, ~Hy=0 (5-66¢)

aza),ukloe_jk’ . azkzloe_jk’ .
Hy~——sinf =————inf (5-664d)

4nr 4r

which are identical to those of (5-27a)—(5-27c). Thus the expressions for the radiation
resistance, radiation intensity, directivity, and maximum effective aperture are those
given by (5-24), (5-29), (5-31), and (5-32).

To demonstrate the variation of the radiation resistance as a function of the radius a
of the loop, it is plotted in Figure 5.9 for A /100 < a < A /30, based on the approxima-
tion of (5-65a). It is evident that the values are extremely low (less than 1 ohm), and
they are usually smaller than the loss resistances of the wires. These radiation resis-
tances also lead to large mismatch losses when connected to practical transmission

T TIIIITI
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1 1 1 1

] 1
/60 /50 A/40

Radius a

1

]
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Figure 5.9 Radiation resistance for a constant current circular-loop antenna based on the
approximation of (5-65a).
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Figure 5.10 Radiation resistance and directivity for circular loop of constant current. (SOURCE:
E. A. Wolff, Antenna Analysis, Wiley, New York, 1966).

lines of 50 or 75 ohms. To increase the radiation resistance, it would require multiple
turns as suggested by (5-24a). This, however, also increases the loss resistance which
contributes to the inefficiency of the antenna. A plot of the radiation resistance for
0 < ka = C/) <20, based on the evaluation of (5-59) by numerical techniques, is
shown in Figure 5.10. The dashed line represents the values based on the large loop
approximation of (5-60) and the dotted (- - - - - ) represents the values based on the small
loop approximation of (5-65a).

In addition to the real part of the input impedance, there is also an imaginary
component which would increase the mismatch losses even if the real part is equal to
the characteristic impedance of the lossless transmission line. However, the imaginary
component can always, in principle at least, be eliminated by connecting a reactive
element (capacitive or inductive) across the terminals of the loop to make the antenna
a resonant circuit.

To facilitate the computations for the directivity and radiation resistance of a cir-
cular loop with a constant current distribution, a MATLAB and FORTRAN computer
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program has been developed. The program utilizes (5-62) and (5-58) to compute the
directivity [(5-58) is integrated numerically]. The program requires as an input the
radius of the loop (in wavelengths). A Bessel function subroutine is contained within
the FORTRAN program. A listing of the program is included in the CD attached with
the book.

5.4 CIRCULAR LOOP WITH NONUNIFORM CURRENT

The analysis in the previous sections was based on a uniform current, which would
be a valid approximation when the radius of the loop is small electrically (usually
a < 0.016)). As the dimensions of the loop increase, the current variations along the
circumference of the loop must be taken into account. As stated previously, a very
common assumption for the current distribution is a cosinusoidal variation [21], [22].
This, however, is not a satisfactory approximation particularly near the driving point
of the antenna [9]. A better distribution would be to represent the current by a Fourier
series [23]

M
1(¢") = Iy+2) I, cos(ng) (5-67)

n=1

where ¢’ is measured from the feed point of the loop along the circumference, as
shown at the inset of Figure 5.11.

A complete analysis of the fields radiated by a loop with nonuniform current distribu-
tion is somewhat complex, laborious, and quite lengthy [2], [3]. Instead of attempting
to include the analytical formulations, which are cumbersome but well documented in
the cited references, a number of graphical illustrations of numerical and experimental
data is presented. These curves can be used in facilitating designs.

To illustrate that the current distribution of a wire loop antenna is not uniform
unless its radius is very small, the magnitude and phase of it have been plotted in
Figure 5.11 as a function of ¢’ (in degrees). The loop circumference C is ka = C/1 =
0.1, 0.2, 0.3, and 0.4 and the wire size was chosen so that Q = 2In(2wa/b) = 10. It
is apparent that for ka = 0.1 the current is nearly uniform. For ka = 0.2 the variations
are slightly greater and become even larger as ka increases. On the basis of these
results, loops much larger than ka = 0.1 (radius much greater than 0.0161) cannot be
considered small.

As was indicated earlier, the maximum of the pattern for a loop antenna shifts
from the plane of the loop (8 = 90°) to its axis (6 = 0°, 180°) as the circumfer-
ence of the loop approaches one wavelength, assuming that simultaneously the current
changes from uniform to nonuniform. Based on the nonuniform current distribution of
(5-67), the directivity of the loop along & = 0° has been computed, and it is plotted in
Figure 5.12 versus the circumference of the loop in wavelengths [8]. The maximum
directivity is about 4.5 dB, and it occurs when the circumference is about 1.4A. For
a one-wavelength circumference, which is usually the optimum design for a helical
antenna, the directivity is about 3.4 dB. It is also apparent that the directivity is basi-
cally independent of the radius of the wire, as long as the circumference is equal or
less than about 1.3 wavelengths; there are differences in directivity as a function of
the wire radius for greater circumferences.

Computed impedances, based on the Fourier series representation of the current,
are shown plotted in Figure 5.13. The input resistance and reactance are plotted as
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(source: J. E. Storer, “Impedance of Thin-Wire Loop Antennas,” AIEE Trans., Vol. 75, November
1956. © 1956 IEEE).
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Figure 5.12 Directivity of circular-loop antenna for & = 0, 7 versus electrical size (circumfer-
ence/wavelength). (source: G. S. Smith, “Loop Antennas,” Chapter 5 of Antenna Engineering
Handbook, 1984, © 1984 McGraw-Hill, Inc. Permission by McGraw-Hill, Inc).



CIRCULAR LOOP WITH NONUNIFORM CURRENT 257

2,000

1

T

1,600

1,200 Q = 21In(2ma/b)

A
L {\ B N
|

Resistance (ohms)
T

800 -

400

] ! 1 ] I ] | ] 1 1 ] 1
0 0.4 0.8 1.2 1.6 2.0 2.4

ka = C/\ (circumference in A)

(a) Resistance

300~ Q=28

100

—100

—300 -

Reactance (ohms)

T

—500

—700 1 1
0 0.4 0.8 1.2 1.6 2.0 2.4

ka = C/\ (circumference in \)

(b) Reactance

Figure 5.13 Input impedance of circular-loop antennas. (source: J. E. Storer, “Impedance of
Thin-Wire Loop Antennas,” AIEE Trans., Vol. 75, November 1956. © 1956 IEEE).



258 LOOP ANTENNAS

a function of the circumference C (in wavelengths) for 0 < ka = C/A < 2.5. The
diameter of the wire was chosen so that Q =2In(2ra/b) =8, 9, 10, 11, and 12. It
is apparent that the first antiresonance occurs when the circumference of the loop is
about A/2, and it is extremely sharp. It is also noted that as the loop wire increases
in thickness, there is a rapid disappearance of the resonances. As a matter of fact, for
Q < 9 there is only one antiresonance point. These curves (for C > 1) are similar, both
qualitatively and quantitatively, to those of a linear dipole. The major difference is that
the loop is more capacitive (by about 130 ohms) than a dipole. This shift in reactance
allows the dipole to have several resonances and antiresonances while moderately thick
loops (€2 < 9) have only one antiresonance. Also small loops are primarily inductive
while small dipoles are primarily capacitive. The resistance curves for the loop and the
dipole are very similar.

To verify the analytical formulations and the numerical computations, loop antennas
were built and measurements of impedance were made [9]. The measurements were
conducted using a half-loop over an image plane, and it was driven by a two-wire line.
An excellent agreement between theory and experiment was indicated everywhere
except near resonances where computed conductance curves were slightly higher than
those measured. This is expected since ohmic losses were not taken into account in
the analytical formulation. It was also noted that the measured susceptance curve was
slightly displaced vertically by a constant value. This can be attributed to the “end
effect” of the experimental feeding line and the “slice generator” used in the analytical
modeling of the feed. For a dipole, the correction to the analytical model is usually a
negative capacitance in shunt with the antenna [24]. A similar correction for the loop
would result in a better agreement between the computed and measured susceptances.
Computations for a half-loop above a ground plane were also performed by J. E.
Jones [25] using the Moment Method.

The radiation resistance and directivity of a loop antenna with a cosinusoidal current
distribution I4(¢) = Ipcos ¢ was derived in [2] and evaluated in [16] by integrating
in far-zone fields and expressing the integral in terms of five Q' (ka) integrals of
similar form as (5-59a) and (5-59b). Doing this, the values are plotted, respectively,
in Figures 5.14(a,b) where they are compared with those based on a uniform current
distribution.

5.4.1 Arrays

In addition to being used as single elements and in arrays, as shown in Figure 5.1(a,b),
there are some other classic arrays of loop configurations. Two of the most popular
arrays of loop antennas are the helical antenna and the Yagi-Uda array. The loop is
also widely used to form a solenoid which in conjunction with a ferrite cylindrical
rod within its circumference is used as a receiving antenna and as a tuning element,
especially in transistor radios. This is discussed in Section 5.7.

The helical antenna, which is discussed in more detail in Section 10.3.1, is a wire
antenna, which is wound in the form of a helix, as shown in Figure 10.13. It is shown
that it can be modeled approximately by a series of loops and vertical dipoles, as
shown in Figure 10.15. The helical antenna possesses in general elliptical polariza-
tion, but it can be designed to achieve nearly circular polarization. There are two
primary modes of operation for a helix, the normal mode and the axial mode. The
helix operates in its normal mode when its overall length is small compared to the
wavelength, and it has a pattern with a null along its axis and the maximum along
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the plane of the loop. This pattern (figure-eight type in the elevation plane) is similar
to that of a dipole or a small loop. A helical antenna operating in the normal mode
is sometimes used as a monopole antenna for mobile cell and cordless telephones,
and it is usually covered with a plastic cover. This helix monopole is used because
its input impedance is larger than that of a regular monopole and more attractive for
matching to typical transmission lines used as feed lines, such as a coaxial line (see
Problem 10.18).

The helix operates in the axial mode when the circumference of the loop is between
3/4A < C < 4/3A with an optimum design when the circumference is nearly one wave-
length. When the circumference of the loop approaches one wavelength, the maximum
of the pattern is along its axis. In addition, the phasing among the turns is such that
overall the helix forms an end-fire antenna with attractive impedance and polarization
characteristics (see Example 10.1). In general, the helix is a popular communication
antenna in the VHF and UHF bands.

The Yagi-Uda antenna is primarily an array of linear dipoles with one element
serving as the feed while the others act as parasitic. However this arrangement has been
extended to include arrays of loop antennas, as shown in Figure 10.30. As for the helical
antenna, in order for this array to perform as an end-fire array, the circumference of each
of the elements is near one wavelength. More details can be found in Section 10.3.4
and especially in [11]—[14]. A special case is the quad antenna which is very popular
amongst ham radio operators. It consists of two square loops, one serving as the
excitation while the other is acting as a reflector; there are no directors. The overall
perimeter of each loop is one wavelength.

5.4.2 Design Procedure

The design of small loops is based on the equations for the radiation resistance (5-24),
(5-24a), directivity (5-31), maximum effective aperture (5-32), resonance capacitance
(5-35), resonance input impedance (5-36) and inductance (5-37a), (5-37b). In order to
resonate the element, the capacitor C, of Figure 5.4 is chosen based on (5-35) so as
to cancel out the imaginary part of the input impedance Z;,.

For large loops with a nonuniform current distribution, the design is accomplished
using the curves of Figure 5.12 for the axial directivity and those of Figure 5.13 for
the impedance. To resonate the loop, usually a capacitor in parallel or an inductor in
series is added, depending on the radius of the loop and that of the wire.

Example 5.4

Design a resonant loop antenna to operate at 100 MHz so that the pattern maximum is along
the axis of the loop. Determine the radius of the loop and that of the wire (in meters), the
axial directivity (in dB), and the parallel lumped element (capacitor in parallel or inductor
in series) that must be used in order to resonate the antenna.

Solution: In order for the pattern maximum to be along the axis of the loop, the cir-
cumference of the loop must be large compared to the wavelength. Therefore the current
distribution will be nonuniform. To accomplish this, Figure 5.13 should be used. There is
not only one unique design which meets the specifications, but there are many designs that
can accomplish the goal.
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One design is to select a circumference where the loop is self resonant, and there is
no need for a resonant capacitor. For example, referring to Figure 5.13(b) and choosing an
Q = 12, the circumference of the loop is nearly 1.1251. Since the free-space wavelength at
100 MHz is 3 meters, then the circumference is

circumference =~ 1.125(3) = 3.375 meters

while the radius of the loop is
3.375
radius = a = —— = 0.5371 meters

The radius of the wire is obtained using

2
Q=12=2 ln($>

a
— = 64.2077
b

or

Therefore the radius of the wire is

_a 05371
T 64.2077 ~ 64.2077

= 0.8365 cm = 8.365 x 10 meters

Using Figure 5.12, the axial directivity for this design is approximately 3.6 dB. Using
Figure 5.13(a), the input impedance is approximately

Zin = Z}, ~ 840 ohms

Since the antenna chosen is self resonant, there is no need for a lumped element to resonate
the radiator.

Another design will be to use another circumference where the loop is not self resonant.
This will necessitate the use of a capacitor C, to resonate the antenna. This is left as an end
of the chapter exercise.

5.5 GROUND AND EARTH CURVATURE EFFECTS FOR CIRCULAR LOOPS

The presence of a lossy medium can drastically alter the performance of a circular
loop. The parameters mostly affected are the pattern, directivity, input impedance, and
antenna efficiency. The amount of energy dissipated as heat by the lossy medium
directly affects the antenna efficiency. As for the linear elements, geometrical optics
techniques can be used to analyze the radiation characteristics of loops in the presence
of conducting surfaces. The reflections are taken into account by introducing appro-
priate image (virtual) sources. Divergence factors are introduced to take into account
the effects of the ground curvature. Because the techniques are identical to the for-
mulations of Section 4.8, they will not be repeated here. The reader is directed to
that section for the details. It should be pointed out, however, that a horizontal loop
has horizontal polarization in contrast to the vertical polarization of a vertical electric
dipole. Exact boundary-value solutions, based on Sommerfeld integral formulations, are
available [25]. However they are too complex to be included in an introductory chapter.
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By placing the loop above a reflector, the pattern is made unidirectional and the
directivity is increased. To simplify the problem, initially the variations of the axial
directivity (0 = 0°) of a circular loop with a circumference of one wavelength
(ka = 1) when placed horizontally a height /2 above an infinite in extent perfect elec-
tric conductor are examined as a function of the height above the ground plane. These
were obtained using image theory and the array factor of two loops, and they are
shown for 10 < 2 < 20 in Figure 5.15[8], [26]. Since only one curve is shown for
10 < ©Q < 20, it is evident that the directivity variations as a function of the height
are not strongly dependent on the radius of the wire of the loop. It is also apparent
that for 0.05A < h < 0.21 and 0.65A < h < 0.75X the directivity is about 9 dB. For
the same size loop, the corresponding variations of the impedance as a function of
the height are shown in Figure 5.16[8], [26]. While the directivity variations are not
strongly influenced by the radius of the wire, the variations of the impedance do show
a dependence on the radius of the wire of the loop for 10 < < 20.

A qualitative criterion that can be used to judge the antenna performance is the ratio
of the radiation resistance in free-space to that in the presence of the homogeneous
lossy medium [27]. This is a straightforward but very tedious approach. A much simpler
method [28] is to find directly the self-impedance changes (real and imaginary) that
result from the presence of the conducting medium.

Since a small horizontal circular loop is equivalent to a small vertical magnetic
dipole (see Section 5.2.2), computations [29] were carried out for a vertical magnetic
dipole placed a height & above a homogeneous lossy half-space. The changes in the self-
impedance, normalized with respect to the free-space radiation resistance Ry given by
(5-24), are found in [29]. Significant changes, compared to those of a perfect conductor,
are introduced by the presence of the ground.

Theory, infinite reflector
12 Q=10-20 7

10 -

Directivity (dB)

| | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

hIA

Figure 5.15 Directivity of circular-loop antenna, C = ka = 1, for 6 = 0 versus distance from
reflector //A. Theoretical curve is for infinite planar reflector. (source: G. S. Smith, “Loop
Antennas,” Chapter 5 of Antenna Engineering Handbook, 1984, © 1984 McGraw-Hill, Inc.
Permission by McGraw-Hill, Inc).
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Figure 5.16 Input impedance of circular-loop antenna C = ka = 1 versus distance from reflec-
tor h/A. Theoretical curves are for infinite planar reflector; measured points are for square
reflector. (source: G. S. Smith, “Loop Antennas,” Chapter 5 of Antenna Engineering Handbook,
1984, © 1984, McGraw-Hill, Inc. Permission by McGraw-Hill, Inc).

The effects that a stratified lossy half-space have on the characteristics of a horizontal
small circular loop have also been investigated and documented [30]. It was found that
when a resonant loop is close to the interface, the changes in the input admittance as a
function of the antenna height and the electrical properties of the lossy medium were
very pronounced. This suggests that a resonant loop can be used effectively to sense
and to determine the electrical properties of an unknown geological structure.

5.6 POLYGONAL LOOP ANTENNAS

The most attractive polygonal loop antennas are the square, rectangular, triangular,
and rhombic. These antennas can be used for practical applications such as for aircraft,
missiles, and communications systems. However, because of their more complex struc-
ture, theoretical analyses seem to be unsuccessful [31]. Thus the application of these
antennas has received much less attention. However design curves, computed using the
Moment Method, do exist [32] and can be used to design polygonal loop antennas for
practical applications. Usually the circular loop has been used in the UHF range because
of its higher directivity while triangular and square loops have been applied in the HF
and UHF bands because of advantages in their mechanical construction. Broadband
impedance characteristics can be obtained from the different polygonal loops.
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5.6.1 Square Loop

Next to the circular loop, the square loop is the simplest loop configuration. The
far-field pattern for a small loop, in each of its principal planes, can be obtained by
assuming that each of its sides is a small linear dipole of constant current [ and length
a. Referring to Figure 5.17, the field in the y-z plane is given according to (4-26a) by

Ey =Ep1+Epp=—]

klya [ e 7k eIk
i | ]
4

(5-68)
r )

since the pattern of each element is omnidirectional in that plane. Using the far-field
approximations of

a .
ry>~r — —sinf

4 for phase variations (5-68a)
rp>r + E sin 0
rMXr>~r for amplitude variations (5-68b)
(5-68) can be written as
E klpae 7% (ka . 0 (5-69)
=n———sin| — sin -
L v 2

For small values of a(a < 1/50), (5-69) reduces to

k 2] — jkr ST —Jjkr
ka)y Toe 77 g = ™S g (5-70)

Ep=n A2r

drr

r

)

J

Figure 5.17 Square loop geometry for far-field observations on the y-z plane.
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where S = a? is the geometrical area of the loop. The corresponding magnetic field is
given by

E,  wSlpe /"

Hy = 0 5-71
7] ” 32 sSin ( )

Equations (5-70) and (5-71) are identical to (5-27b) and (5-27a), respectively, for the
small circular loop. Thus the far-zone principal-plane fields of a small square loop
are identical to those of a small circular loop. The fields in the other planes are more
difficult to obtain, and they will not be attempted here. However design curves are
included which can be used for practical design applications.

5.6.2 Triangular, Rectangular, and Rhombic Loops

Shown in Figure 5.18 are the polygonal loops for which design data will be presented.
They consist of top- and base-driven triangular loops, a rectangular loop, and a rhom-
bic loop. The top-driven triangular loop has its feed at the top corner of the isosceles
triangle while the base-driven configuration has its terminals at the base. The rectan-
gular loop has its feed at the center of one of its sides while the rhombic configuration
has its terminals at one of its corners.

~—
i 2 p b
(~)
(a) Top-driven triangular (b) Base-driven triangular
2b
H
+— (~0)
w —| |«—2b
(c) Rectangular (d) Rhombic

Figure 5.18 Typical configurations of polygonal loop antennas. (source: T. Tsukiji and S. Tou,
“On Polygonal Loop Antennas,” IEEE Trans. Antennas Propagat., Vol. AP-28, No. 4, July 1980.
© 1980 IEEE).
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The parameter § defines the angle of the top corner of the isosceles triangle for
the triangular and rhombic loops while y = W/H is used to identify the relative side
dimensions of the rectangular loop. The perimeter of each loop is given by P; for the
rectangular loop, P = 2(H + W). For all configurations, the radius of the wire is b.

Included in [32] are the input impedance (Z = R + jX) variations, as a function
of P (in wavelengths), of the four configurations shown in Figure 5.18. The interval
between adjacent points on each curve is AP /A = 0.2. Depending on the parameters
B or y, the input resistance of polygonal loops near the resonance frequency changes
drastically. The reactance goes to zero when a loop approaches a short-circuited A/2
long transmission line. In design then, the shape of the loop can be chosen so that
the input impedance is equal to the characteristic impedance of the transmission line.
Although the curves in [32] are for specific wire radii, the impedance variations of the
polygonal antennas as a function of the wire diameter are similar to those of the dipole.

Because the radius of the impedance locus for the 8 = 60° of the top-driven trian-
gular loop [Figure 5.18(a)] is smaller than for the other values of B, the 8 = 60° has
the broadest impedance bandwidth compared with other triangular shapes or with the
same shape but different feed points. Similar broadband impedance characteristics are
indicated in [32] for a rectangular loop with y = 0.5 (the side with the feed point is
twice as large as the other).

It can then be concluded that if the proper shape and feed point are chosen, a
polygonal loop can have broadband impedance characteristics. The most attractive are
the top-driven triangular loop with 8 = 60° and the rectangular loop with y = 0.5. A
50-70 ohm coaxial cable can be matched with a triangular loop with 8 = 40°. Rect-
angular loops with greater directivities, but with less ideal impedance characteristics,
are those with larger values of y.

The frequency characteristics of a polygonal loop can be estimated by inspecting
its current distribution. When the current standing wave pattern has, at its antiresonant
frequency, a null at a sharp corner of the loop, the loop has a very low current standing
wave and, hence, broadband impedance characteristics.

Radiation patterns for the B = 60° top- and base-driven triangular loops and the
y =4 rectangular loop, for various values of P (in wavelengths), were also com-
puted [32]. It was noted that for low frequencies near the resonance, the patterns of the
top- and base-driven triangular loops were not too different. However, for higher fre-
quencies the base-driven triangular loop had a greater gain than its corresponding top-
driven configuration. In general, rectangular loops with larger y’s have greater gains.

5.7 FERRITE LOOP

Because the loss resistance is comparable to the radiation resistance, electrically small
loops are very poor radiators and are seldom used in the transmitting mode. However,
they are often used for receiving signals, such as in radios and pagers, where the
signal-to-noise ratio is much more important than the efficiency.

5.7.1 Radiation Resistance

The radiation resistance, and in turn the antenna efficiency, can be raised by increas-
ing the circumference of the loop. Another way to increase the radiation resistance,
without increasing the electrical dimensions of the antenna, would be to insert within
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its circumference a ferrite core that has a tendency to increase the magnetic flux, the
magnetic field, the open-circuit voltage, and in turn the radiation resistance of the
loop [33], [34]. This is the so-called ferrite loop and the ferrite material can be a rod
of very few inches in length. The radiation resistance of the ferrite loop is given by

Ry ce g
A (“ ) =12, (5-72)

R = radiation resistance of ferrite loop
R, = radiation resistance of air core loop
e = effective permeability of ferrite core
o = permeability of free-space
Ueer = relative effective permeability of ferrite core

Using (5-24), the radiation resistance of (5-72) for a single-turn small ferrite loop can
be written as

c\* e 2 c\*
Ry = 207? <X> (m)) = 2072 <X> K2, (5-73)
and for an N-turn loop, using (5-24a), as
C 4 2 C 4
R; = 207 (K) (’;—0> N? = 2072 (K) 2, N2 (5-74)

The relative effective permeability of the ferrite core p.., is related to the relative
intrinsic permeability of the unbounded ferrite material w7, (1 = s/ po) by

Mece Krr

Pee ___ oFr (5-75)
wo 1+ Dy — 1)

MHcer =

where D is the demagnetization factor which has been found experimentally for
different core geometries, as shown in Figure 5.19. For most ferrite material, the rel-
ative intrinsic permeability w /. is very large (u s 3> 1) so that the relative effective
permeability of the ferrite core .., is approximately inversely proportional to the
demagnetization factor, or [l ~ 1/D = D~'. In general, the demagnetization factor
is a function of the geometry of the ferrite core. For example, the demagnetization
factor for a sphere is D = % while that for an ellipsoid of length 2/ and radius a, such

that [ > a, is
2 21
D= (ﬁ) [m <—> - 1} . I>a (5-75a)
l a

5.7.2 Ferrite-Loaded Receiving Loop

Because of their smallness, ferrite loop antennas of few turns wound around a small
ferrite rod are used as antennas especially in pocket transistor radios. The antenna is
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Figure 5.19 Demagnetization factor as a function of core length/diameter ratio. (SOURCE:
E. A. Wolff, Antenna Analysis, Wiley, New York, 1966).

usually connected in parallel with the RF amplifier tuning capacitance and, in addition
to acting as an antenna, it furnishes the necessary inductance to form a tuned circuit.
Because the inductance is obtained with only few turns, the loss resistance is kept
small. Thus the Q is usually very high, and it results in high selectivity and greater
induced voltage.

The equivalent circuit for a ferrite-loaded loop antenna is similar to that of Figure 5.4
except that a loss resistance Ry, in addition to R;, is needed to account for the power
losses in the ferrite core. Expressions for the loss resistance Rj; and inductance L 4 for
the ferrite-loaded loop of N turns can be found in [7] and depend on some empirical
factors which are determined from an average of experimental results. The inductance
L; is the same as that of the unloaded loop.

5.8 MOBILE COMMUNICATION SYSTEMS APPLICATIONS

As was indicated in Section 4.7.4 of Chapter 4, the monopole is one of the most widely
used elements for handheld units of mobile communication systems. An alternative to
the monopole is the loop, [35]-[40], which has been often used in pagers but has
found very few applications in handheld transceivers. This is probably due to loop’s
high resistance and inductive reactance which are more difficult to match to standard
feed lines. The fact that loop antennas are more immune to noise makes them more
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attractive for an interfering and fading environment, like that of mobile communica-
tion systems. In addition, loop antennas become more viable candidates for wireless
communication systems which utilize devices operating at higher frequency bands,
particularly in designs where balanced amplifiers must interface with the antenna.
Relative to top side of the handheld unit, such as the telephone, the loop can be placed
either horizontally [36] or vertically [38]—[40]. Either configuration presents attractive
radiation characteristics for land-based mobile systems.

The radiation characteristics, normalized pattern and input impedance, of a monopole
and vertical loop mounted on an experimental mobile handheld device were examined
in [38]-[40]. The loop was in the form of a folded configuration mounted vertically
on the handheld conducting device with its one end either grounded or ungrounded
to the device. The predicted and measured input impedance of the folded loop, when
its terminating end was grounded to the box, are displayed in Figure 5.20(a,b). It is
evident that the first resonance, around 900 MHz, of the folded loop is of the par-
allel type (antiresonance) with a very high, and rapidly changing versus frequency,
resistance, and reactance. These values and variations of impedance are usually unde-
sirable for practical implementation. For frequencies below the first resonance, the
impedance is inductive (imaginary part is positive), as is typical of small loop anten-
nas (see Figure 5.13); above the first resonance, the impedance is capacitive (nega-
tive imaginary part). The second resonance, around 2,100 MHz, is of the series type
with slowly varying values of impedance, and of desirable magnitude, for practical
implementation. The resonance forms (parallel vs. series) can be interchanged if the
terminating end of the folded loop is ungrounded with the element then operating as
an L monopole [38]-[40] and exhibiting the same resonance behavior as that of a
monopole mounted on the device (see Chapter 4, Section 4.7.4, Figure 4.21). Even
though the radiating element is a loop whose plane is vertical to the box, the ampli-
tude pattern, in both cases (loop and L), is similar and nearly omnidirectional as
that of the monopole of Figure 4.21 because the PEC box is also part of the radiat-
ing system.

A summary of the pertinent parameters and associated formulas and equation num-
bers for this chapter are listed in Table 5.1.

5.9 MULTIMEDIA

In the CD that is part of the book, the following multimedia resources are included for
the review, understanding, and visualization of the material of this chapter:

&

Java-based interactive questionnaire, with answers.

b. Java-based applet for computing and displaying the radiation characteristics of
a loop.

c. Java-based animation of loop amplitude pattern.

d. Matlab and Fortran computer program, designated Loop, for computing the
radiation characteristics of a loop. A description of the program is found in the
READ ME file of the corresponding program in the attached CD.

e. Power Point (PPT) viewgraphs, in multicolor.
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Figure 5.20 Input impedance, real and imaginary parts of a wire folded loop mounted vertically
on a conducting mobile hand-held unit (source: K. D. Katsibas, et. al., “Folded Loop Antenna

for Mobile Hand-Held Units,” IEEE Transactions Antennas Propagat., Vol. 46, No. 2, February
1998, pp. 260-266. © 1998 1EEE).
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TABLE 5.1 Summary of Important Parameters, and Associated Formulas and
Equation Numbers for Loop in Far Field

Parameter Formula Equation Number

Small Circular Loop (a < A/6m,C < A/3)

(Uniform Current)

Normalized power U= |E¢n|2 = Cysin® 0 (5-27b)
pattern
. Eg
Wave impedance Zy =—— ~n =377 Ohms (5-28)
Z Hy
. 3
Directivity Dy Dy = 7= 1.761 dB (5-31)
. . 3A2
Maximum effective Aep = — (5-32)
8w
area A,
N\’
Radiation resistance R, = 2072 (—) (5-24)
R, (one turn) A
c\?
Radiation resistance R, = 2072 (—) N? (5-24a)
R, (N turns) A
o\
Input resistance R, Riy = R, = 2072 <x) (5-24)
1 C
Loss resistance R, R, = — ko _ = |2k (2-90b)
P\ 20 2nb\ 20
(one turn)
. Na R,
Loss resistance R; R, = TRX e +1 (5-25)
(N turns) 0
8a
Loop external Li=poa|ln| — ) -2 (5-37a)
. b
inductance L4
Loop internal L; = ib % (5-38)
inductance L; @ o
Vector effective £, =4, jkoma?® cos r; sin 6; (5-40)
length £,
Half-power HPBW = 90° (4-65)
beamwidth

(continued overleaf)
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TABLE 5.1 (continued)

Parameter Formula Equation Number

Large Circular Loop (a > 1/2,C > 3.14))

(Uniform Current)

Normalized power U = |E¢n|2 =C le(ka sin @) (5-57)
pattern
. Ey
Wave impedance Zy, =—— =~n =377 Ohms (5-28)
z Hy
w
C
Directivity Dy Dy = 0.677 <K> (5-63b)
(a > \/2)
A2 C
Maximum effective Ao = . [0.677 (—)] (5-63¢)
area A.p, (a > 1/2) T A
.. . ,(C
Radiation resistance R, =60~ | — (5-63a)
@ > r/2), A
(one turn)
C
Input resistance Ry =R, =602 = (5-63a)
@ > r/2), A
(one turn)
| c |
Loss resistance R;, R, = — Oho _ = @Ko (2-90b)
(one turn) P\ 20 2nb\ 20
. Na R,
Loss resistance R;, R, = TRS R +1 (5-25)
(N turns) 0
. 8a
External inductance Ly = poa|ln > ) 2 (5-37a)
Ly
Internal inductance L; = 4 [OHo (5-38)
L. wbY 20
Vector effective L, =4yj koma? cos ; sin 6; (5-40)
length £,

Small Square Loop (Figure 5.17)

(Uniform Current, a on Each Side

Normalized power U = |Ey, > =C, sin® 6 (5-70)
pattern (principal
plane)
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Parameter Formula Equation Number
. Ly
Wave impedance Zy =—— =~n =377 Ohms (5-28)
z Hy
4 4
Radiation resistance R. =20 2ma\" _ 20 ¢
R, ' A A
4 4
Input resistance R. —=R. =20 4_“ —20 P
Rin m r )\‘ A‘
4 4
Loss resistance R, R, = M |2k = el (2-90b)
PY 20 2rb\ 20
External inductance Ly =22 [ln (f) - 0‘774] (5-37b)
I b4 b
A
4a | 4 /
Internal inductance L; = 26 [k “ho (5-38)
L. wPY 20 2nbw\ 20
Ferrite Circular Loop (a < )/67, C < 1/3)
(uniform current)
. . c\*
Radiation resistance Ry = 2072 (_) Mger (5-73)
R (one turn) A
Mfr
Heer = 7= (5'75)
L+ D(up — 1)
- . c\*
Radiation resistance Ry = 2072 (_) Mzer N2 (5-74)
R; (N turns) A
. a\? 21
Ellipsoid: D = (—) m(Z) -1
l a
Demagnetizing I>a (5-75a)
factor D |
Sphere: D = -
3
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PROBLEMS

5.1. Derive

(a) (5-18a)—(5-18c) using (5-17) and (3-2a)
(b) (5-192)—(5-19b) using (5-18a)—(5-18c)

5.2. Write the fields of an infinitesimal linear magnetic dipole of constant current

5.

I,,, length [, and positioned along the z-axis. Use the fields of an infinitesimal
electric dipole, (4-8a)—(4-10c), and apply the principle of duality. Compare
with (5-20a)—(5-20d).

3. A circular loop, of loop radius /30 and wire radius A/1000, is used as a
transmitting/receiving antenna in a back-pack radio communication system at
10 MHz. The wire of the loop is made of copper with a conductivity of 5.7 x
107 S/m. Assuming the antenna is radiating in free space, determine the

(a) radiation resistance of the loop;
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54.

5.5.

5.6.

LOOP ANTENNAS

(b) loss resistance of the loop (assume that its value is the same as if the wire
were straight);

(c) input resistance;
(d) input impedance;
(e) radiation efficiency.

A small circular loop with a uniform current distribution, and with its classical
omnidirectional pattern, is used as a receiving antenna. Determine the maximum
directivity (dimensionless and in dB) using:

(a) Exact method.

(b) An approximate method appropriate for this pattern. Specify the
method used.

(c) Another approximate method appropriate for this pattern. Specify the
method used.

Hint: For the approximate methods, the word omnidirectional is a clue.

A N-turn resonant circular loop with a uniform current distribution and with
a circumference of L/4, is fed by a lossless balanced twin-lead transmission
line with a characteristic impedance of 300 ohms. Neglecting proximity effects,
determine the

(a) closest integer number of turns so that the input impedance is nearly
300 ohms;

(b) input impedance of the antenna;

(c) reflection coefficient;

(d) VSWR inside the transmission line.

A small circular loop with circumference C < 1/20 is used as a receiving

antenna. A uniform plane wave traveling along the x-axis and toward the pos-
itive (4) x direction (as shown in the figure), whose electric field is given by

E = (4, +24,)e /"

is incident upon the antenna. Determine the

(a) polarization of the incident wave. Justify your answer.
(b) axial ratio of the polarization ellipse of the incident wave.
(c) polarization of the loop antenna toward the x-axis.
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5.8.

5.9.

5.10.

5.11.

5.12.

5.13.
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(d) polarization loss factor (dimensionless and in dB).

(e) maximum power at / GHz that can be delivered to a load connected to the
antenna, if the power density of the above incident wave is 5 mwatts/cm?.
Assume no other losses.

Hint: 4y = —4,sin¢ + 4, cos ¢

Find the radiation efficiency of a single-turn and a four-turn circular loop each
of radius A/(10m) and operating at 10 MHz. The radius of the wire is 10731
and the turns are spaced 3 x 10731 apart. Assume the wire is copper with a
conductivity of 5.7 x 107 S/m, and the antenna is radiating into free-space.

Find the power radiated by a small loop by forming the average power density,
using (5-27a)—(5-27c¢), and integrating over a sphere of radius . Compare the
answer with (5-23b).

For a small loop of constant current, derive its far-zone fields using (5-17) and
the procedure outlined and relationships developed in Section 3.6. Compare the
answers with (5-27a)—(5-27¢).

A single-turn resonant circular loop with a A/8m radius is made of copper
wire with a wire radius of 107#A /27 and conductivity of 5.7 x 107 S/m. For a
frequency of 100 MHz, determine, assuming uniform current, the

(a) radiation efficiency (assume the wire is straight);

(b) maximum gain of the antenna (dimensionless and in dB).

Design a lossless resonant circular loop operating at 10 MHz so that its single-
turn radiation resistance is 0.73 ohms. The resonant loop is to be connected to
a matched load through a balanced “twin-lead” 300-ohm transmission line.

(a) Determine the radius of the loop (in meters and wavelengths).

(b) To minimize the matching reflections between the resonant loop and the
300-ohm transmission line, determine the closest number of integer turns
the loop must have.

(c) For the loop of part b, determine the maximum power that can be expected
to be delivered to a receiver matched load if the incident wave is polarization
matched to the lossless resonant loop. The power density of the incident
wave is 10~%watts/m?.

A resonant six-turn loop of closely spaced turns is operating at 50 MHz. The
radius of the loop is A /30, and the loop is connected to a 50-ohm transmission
line. The radius of the wire is A/300, its conductivity is o = 5.7 x 107 S/m,
and the spacing between the turns is A/100. Determine the

(a) directivity of the antenna (in dB)

(b) radiation efficiency taking into account the proximity effects of the turns
(c) reflection efficiency

(d) gain of the antenna (in dB)

Find the radiation efficiency (in percent) of an eight-turn circular-loop antenna

operating at 30 MHz. The radius of each turn is a = 15 cm, the radius of the
wire is b = 1 mm, and the spacing between turns is 2¢ = 3.6 mm. Assume
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5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.
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the wire is copper (o = 5.7 x 107 S/m), and the antenna is radiating into free-
space. Account for the proximity effect.

A very small circular loop of radius a(a < A/6) and constant current /; is
symmetrically placed about the origin at x = 0 and with the plane of its area
parallel to the y-z plane. Find the

(a) spherical E- and H-field components radiated by the loop in the far zone
(b) directivity of the antenna

Repeat Problem 5.14 when the plane of the loop is parallel to the x-z plane at
y=0.

Using the computer program of this chapter, compute the radiation resistance
and the directivity of a circular loop of constant current with a radius of

(@ a=1/50 bB)a=xr/10 (c)a=r/4 (d)a=A4r/2

A constant current circular loop of radius a = 51 /4 is placed on the x-y plane.

Find the two smallest angles (excluding & = 0°) where a null is formed in the
far-field pattern.

Design a circular loop of constant current such that its field intensity vanishes
only at & = 0°(0 = 180°) and 90°. Find its

(a) radius

(b) radiation resistance

(c) directivity

Design a constant current circular loop so that its first minimum, aside from

0 = 0°, in its far-field pattern is at 30° from a normal to the plane of the loop.
Find the

(a) smallest radius of the antenna (in wavelengths)
(b) relative (to the maximum) radiation intensity (in dB) in the plane of the loop
Design a constant current circular loop so that its pattern has a null in the plane

of the loop, and two nulls above and two nulls below the plane of the loop.
Find the

(a) radius of the loop
(b) angles where the nulls occur

A constant current circular loop is placed on the x-y plane. Find the far-field
position, relative to that of the loop, that a linearly polarized probe antenna
must have so that the polarization loss factor (PLF) is maximized.

A very small (@ <« A) circular loop of constant current is placed a distance
h above an infinite electric ground plane. Assuming z is perpendicular to the
ground plane, find the total far-zone field radiated by the loop when its plane
is parallel to the

(a) x-z plane

(b) y-z plane

A very small loop antenna (a < 1/30) of constant current is placed a height &

above a flat, perfectly conducting ground plane of infinite extent. The area plane
of the loop is parallel to the interface (x-y plane). For far-field observations
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(a) find the total electric field radiated by the loop in the presence of the
ground plane

(b) all the angles (in degrees) from the vertical to the interface where the total
field will vanish when the height is A

(c) the smallest nonzero height (in 1) such that the total far-zone field exhibits
a null at an angle of 60° from the vertical

5.24. A small circular loop, with its area parallel to the x-z plane, is placed a height
h above an infinite flat perfectly electric conducting ground plane. Determine

(a) the array factor for the equivalent problem which allows you to find the
total field on and above the ground plane

(b) angle(s) 8 (in degrees) where the array factor will vanish when the loop is
placed at a height A/2 above the ground plane

Z

Y

4—3‘—4

X

5.25. A small circular loop with its area parallel to the x-z plane is placed at a height
h above an infinite perfectly conducting ground plane, as shown in the figure
for Problem 5.24. Determine the
(a) array factor for the equivalent problem which will allow you to find the

total field on and above the ground plane.
(b) two smallest heights h (in L) greater than h = 0 (i.e., h > 0) that will form
a maximum on the magnitude of the array factor toward 6 = 0°.

5.26. For the loop of Problem 5.22(a), find the smallest height # so that a null is
formed in the y-z plane at an angle of 45° above the ground plane.

5.27. A small single-turn circular loop of radius a = 0.051 is operating at 300 MHz.
Assuming the radius of the wire is 1071, determine the
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5.28.

5.29.

5.30.

5.31

5.32.
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(a) loss resistance
(b) radiation resistance
(c) loop inductance

Show that the loop inductive reactance is much greater than the loss resis-
tance and radiation resistance indicating that a small loop acts primarily as
an inductor.

Determine the radiation resistance of a single-turn small loop, assuming the
geometrical shape of the loop is

(a) rectangular with dimensions a and b (a, b < A)
(b) elliptical with major axis a and minor axis b (a, b, K )

A one-turn small circular loop is used as a radiating element for a VHF (f =
100 MHz) communications system. The loop is constructed out of a perfect
electric conducting wire. The circumference of the loop is C = A/20 while the
radius of the wire is A/400. Determine, using o = 5.7 x 107 S/m, the

(a) input resistance of the wire for a single turn.
(b) input reactance of the loop. Is it inductive or capacitive? Be specific.

(c) inductance (in henries) or capacitance (in farads) that can be placed in
series with the loop at the feed to resonate the antenna at f = 100 MHz;
choose the element that will accomplish the desired objective.

Show that for the rectangular loop the radiation resistance is represented by

a’b?
R, =31,171 (—)
)»4

while for the elliptical loop is represented by

2,212
R, = 31,171 (” a b>

16A%

Assuming the direction of the magnetic field of the incident plane wave coin-
cides with the plane of incidence, derive the effective length of a small circular
loop of radius a based on the definition of (2-92). Show that its effective
length is

£, =4, jkSsin(0)

where S = a?.

A circular loop of nonconstant current distribution, with circumference of 1.4,
is attached to a 300-ohm line. Assuming the radius of the wire is 1.555 x 1072,
find the

(a) input impedance of the loop

(b) VSWR of the system

(c) inductance or capacitance that must be placed across the feed points so that
the loop becomes resonant at f = 100 MHz.
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A very popular antenna for amateur radio operators is a square loop antenna
(referred to as quad antenna) whose circumference is one wavelength. Assum-
ing the radiation characteristics of the square loop are well represented by those
of a circular loop:

(a) What is the input impedance (real and imaginary parts) of the antenna?

(b) What element (inductor or capacitor), and of what value, must be placed in
series with the loop at the feed point to resonate the radiating element at a
frequency of 1 GHz?

(c) What is the input VSWR, having the inductor or capacitor in place, if the
loop is connected to a 78-ohm coaxial cable?

Design circular loops of wire radius b, which resonate at the first

resonance. Find

(a) four values of a/b where the first resonance occurs (a is the radius of
the loop)

(b) the circumference of the loops and the corresponding radii of the wires for
the antennas of part (a).

Using the asymptotic form of (5-59b) for small argument, show that the radia-
tion resistance of (5-64a) for a small loop of uniform current is given by

C 4
R, = 207%(ka)* = 2072 <X>

Consider a circular loop of wire of radius a on the x-y plane and centered about
the origin. Assume the current on the loop is given by

1,(¢") = Iycos(¢)
(a) Show that the far-zone electric field of the loop is given by

_ jnkal e~ J (kasin )

E 0 si
0=y T T g oSO sine
ink —jkr
E, = ]nz aloe Ji/'(ka sin ) cos ¢
where 47,()
N =22
dx

(b) Evaluate the radiation intensity U (6, ¢) in the direction § = 0 and ¢ = 5
as a function of ka.
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Arrays: Linear, Planar, and Circular

6.1 INTRODUCTION

In the previous chapter, the radiation characteristics of single-element antennas were
discussed and analyzed. Usually the radiation pattern of a single element is relatively
wide, and each element provides low values of directivity (gain). In many applications
it is necessary to design antennas with very directive characteristics (very high gains)
to meet the demands of long distance communication. This can only be accomplished
by increasing the electrical size of the antenna.

Enlarging the dimensions of single elements often leads to more directive charac-
teristics. Another way to enlarge the dimensions of the antenna, without necessarily
increasing the size of the individual elements, is to form an assembly of radiating
elements in an electrical and geometrical configuration. This new antenna, formed by
multielements, is referred to as an array. In most cases, the elements of an array are
identical. This is not necessary, but it is often convenient, simpler, and more practical.
The individual elements of an array may be of any form (wires, apertures, etc.).

The total field of the array is determined by the vector addition of the fields radiated
by the individual elements. This assumes that the current in each element is the same
as that of the isolated element (neglecting coupling). This is usually not the case and
depends on the separation between the elements. To provide very directive patterns, it
is necessary that the fields from the elements of the array interfere constructively (add)
in the desired directions and interfere destructively (cancel each other) in the remaining
space. Ideally this can be accomplished, but practically it is only approached. In an
array of identical elements, there are at least five controls that can be used to shape
the overall pattern of the antenna. These are:

1. the geometrical configuration of the overall array (linear, circular, rectangular,
spherical, etc.)

the relative displacement between the elements
the excitation amplitude of the individual elements
the excitation phase of the individual elements

the relative pattern of the individual elements

A
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The influence that each one of the above has on the overall radiation characteristics
will be the subject of this chapter. In many cases the techniques will be illustrated
with examples.

There are a plethora of antenna arrays used for personal, commercial, and military
applications utilizing different elements including dipoles, loops, apertures, microstrips,
horns, reflectors, and so on. Arrays of dipoles are shown in Figures 4.21, 10.19,
and 11.12. The one in Figure 4.21 is an array that is widely used as a base-station
antenna for mobile communication. It is a triangular array consisting of twelve dipoles,
with four dipoles on each side of the triangle. Each four-element array, on each side
of the triangle, is basically used to cover an angular sector of 120° forming what is
usually referred to as a sectoral array. The one in Figure 10.19 is a classic array of
dipoles, referred to as the Yagi-Uda array, and it is primarily used for TV and ama-
teur radio applications. The array of Figure 11.12 is also an array of dipoles, which is
referred to as the log-periodic antenna, which is primarily used for TV reception and
has wider bandwidth than the Yagi-Uda array but slightly smaller directivity. An array
of loops is shown in Figure 5.1 and one utilizing microstrips as elements is displayed
in Figure 14.35. An advanced array design of slots, used in the AWACS, is shown in
Figure 6.27.

The simplest and one of the most practical arrays is formed by placing the elements
along a line. To simplify the presentation and give a better physical interpretation of the
techniques, a two-element array will first be considered. The analysis of an N-element
array will then follow. Two-dimensional analysis will be the subject at first. In latter
sections, three-dimensional techniques will be introduced.

6.2 TWO-ELEMENT ARRAY

Let us assume that the antenna under investigation is an array of two infinitesimal
horizontal dipoles positioned along the z-axis, as shown in Figure 6.1(a). The total
field radiated by the two elements, assuming no coupling between the elements, is
equal to the sum of the two and in the y-z plane it is given by

k1ol e~ Jkn—=(8/2)] e—ilkra+(B/2)]
Et=E1+E2=99j77—{7c0s01—i—icog%} (6-1)
4 1 r

where B is the difference in phase excitation between the elements. The magnitude
excitation of the radiators is identical. Assuming far-field observations and referring to
Figure 6.1(b),

0~ 6, ~0 (6-22)

rp>~r — —cosf
for phase variations (6-2b)

rQ:r—l—Ecos@

rNXr>r for amplitude variations (6-2¢)
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(b) Far-field observations

Figure 6.1 Geometry of a two-element array positioned along the z-axis.

Equation 6-1 reduces to

—jkr
E, = ﬁejnklole ! COS@[€+j(kd cos0+p)/2 + e—j(kd cos0+ﬁ)/2]
drrr
kIgle=7*r 1
E, = ﬁ@jnL cos @ {2cos | =(kdcosb + B) (6-3)
drrr 2

It is apparent from (6-3) that the total field of the array is equal to the field of a
single element positioned at the origin multiplied by a factor which is widely referred
to as the array factor. Thus for the two-element array of constant amplitude, the array
factor is given by

AF = 2cos[5 (kd cos 6 + B)] (6-4)
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which in normalized form can be written as
(AF), = cos[%(kd cosf + B)] (6-4a)

The array factor is a function of the geometry of the array and the excitation phase. By
varying the separation d and/or the phase 8 between the elements, the characteristics
of the array factor and of the total field of the array can be controlled.

It has been illustrated that the far-zone field of a uniform two-element array of
identical elements is equal to the product of the field of a single element, at a selected
reference point (usually the origin), and the array factor of that array. That is,

E(total) = [E(single element at reference point)] x [array factor] (6-5)

This is referred to as pattern multiplication for arrays of identical elements, and it is
analogous to the pattern multiplication of (4-59) for continuous sources. Although it has
been illustrated only for an array of two elements, each of identical magnitude, it is also
valid for arrays with any number of identical elements which do not necessarily have
identical magnitudes, phases, and/or spacings between them. This will be demonstrated
in this chapter by a number of different arrays.

Each array has its own array factor. The array factor, in general, is a function of
the number of elements, their geometrical arrangement, their relative magnitudes, their
relative phases, and their spacings. The array factor will be of simpler form if the
elements have identical amplitudes, phases, and spacings. Since the array factor does
not depend on the directional characteristics of the radiating elements themselves, it
can be formulated by replacing the actual elements with isotropic (point) sources. Once
the array factor has been derived using the point-source array, the total field of the
actual array is obtained by the use of (6-5). Each point-source is assumed to have the
amplitude, phase, and location of the corresponding element it is replacing.

In order to synthesize the total pattern of an array, the designer is not only required
to select the proper radiating elements but the geometry (positioning) and excitation
of the individual elements. To illustrate the principles, let us consider some examples.

Example 6.1
Given the array of Figures 6.1(a) and (b), find the nulls of the total field when d = A /4 and

a. =0

b4
b. g = +g
c. B= —
Solution:

a. =0
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The normalized field is given by
E,, = cos6 cos (% cos 9)
The nulls are obtained by setting the total field equal to zero, or
/4
E,, = cosf cos (Z cos 9) lo=g, =0

Thus
cosf, = 0=6, =90°

and
i b/ 14
cos (—cos@,,) =02 —cosb, = —, —
4 4 2

SN

= 6, = does not exist

The only null occurs at & = 90° and is due to the pattern of the individual elements. The
array factor does not contribute any additional nulls because there is not enough separation
between the elements to introduce a phase difference of 180° between the elements, for any
observation angle.

T
b. B=+=
p 2

The normalized field is given by

T
E,, = cosf cos [Z(cose + 1)]
The nulls are found from
b4
E;, = cos6f cos [Z(cose AF 1)] lg=g, =0

Thus
cosf, =0=>6, =90°

and

cos I:E(Cose AF 1)] lo=g, = 0= z(COSen +1) = E =0, = 0°
4 n 4 2
and

= %(cos@n +1) = —% = 6@, = does not exist

The nulls of the array occur at & = 90° and 0°. The null at 0° is introduced by the
arrangement of the elements (array factor). This can also be shown by physical reasoning,
as shown in Figure 6.2(a). The element in the negative z-axis has an initial phase lag of 90°
relative to the other element. As the wave from that element travels toward the positive z-axis
(6 = 0° direction), it undergoes an additional 90° phase retardation when it arrives at the
other element on the positive z-axis. Thus there is a total of 180° phase difference between
the waves of the two elements when travel is toward the positive z-axis (9 = 0°). The waves
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e Jjml4

#1 o3 2

ng ol Jr Ad = 90°
/
A/8 il
— Ad =90° l

A/8 #2
l oA
#2 0 =180°
6 =180°
(a) 6 = 0° direction (b) 6 = 180° direction

Figure 6.2 Phase accumulation for two-element array for null formation toward 6 = 0°
and 180°.

of the two elements are in phase when they travel in the negative z-axis (9 = 180°), as
shown in Figure 6.2(b).

The normalized field is given by
14
E,, = cos0 cos [Z(COSQ — 1)]

and the nulls by
b4
E,, = cosf cos [Z(cose — 1)] lo=g, =0

Thus
cos@, =0>6, =90°

and
cos [%(cos@n — 1)] =0 %(cos@,1 —1) = % = 6, = does not exist
and

b4 /4 R
= Z(cosen -1 = —3 =0, = 180

The nulls occur at 90° and 180°. The element at the positive z-axis has a phase lag of 90°
relative to the other, and the phase difference is 180° when travel is restricted toward the
negative z-axis. There is no phase difference when the waves travel toward the positive
z-axis. A diagram similar to that of Figure 6.2 can be used to illustrate this case.
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To better illustrate the pattern multiplication rule, the normalized patterns of the
single element, the array factor, and the total array for each of the above array examples
are shown in Figures 6.3, 6.4(a), and 6.4(b). In each figure, the total pattern of the array
is obtained by multiplying the pattern of the single element by that of the array factor.
In each case, the pattern is normalized to its own maximum. Since the array factor for
the example of Figure 6.3 is nearly isotropic (within 3 dB), the element pattern and the
total pattern are almost identical in shape. The largest magnitude difference between
the two is about 3 dB, and for each case it occurs toward the direction along which the
phases of the two elements are in phase quadrature (90° out of phase). For Figure 6.3
this occurs along & = 0° while for Figures 6.4(a,b) this occurs along 8 = 90°. Because
the array factor for Figure 6.4(a) is of cardioid form, its corresponding element and
total patterns are considerably different. In the total pattern, the null at & = 90° is due
to the element pattern while that toward & = 0° is due to the array factor. Similar
results are displayed in Figure 6.4(b).

|

60°

Relative power

3
2
=3
o
®
>
s
S
&

(dB down)

60°

(dB down)
[eN)
(=)
o

90° X 90° 90°

120°

180° 180°

Element Array factor

Figure 6.3 Element, array factor, and total field patterns of a two-element array of infinitesimal
horizontal dipoles with identical phase excitation (8 = 0°, d = A/4).
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Example 6.2

Consider an array of two identical infinitesimal dipoles oriented as shown in Figures 6.1(a)
and (b). For a separation d and phase excitation difference  between the elements, find the
angles of observation where the nulls of the array occur. The magnitude excitation of the
elements is the same.

Solution: The normalized total field of the array is given by (6-3) as

E,, =cos0 cos[%(kd cosf + B)]
To find the nulls, the field is set equal to zero, or
E,, = cos0 cos[%(kd cosO + B)llo=g, =0

Thus
cos@, =0=6, =90°

and

1 1 241
cos|:§(kdcos9n+ﬂ)i|=OE>5(kdc039,,+/3)=i< ”2+ >rr

—cos~! [ 2o
= 6, = cos <2nd[ ﬁi(2n+1)n]>,

n=0,1,2,...

The null at & = 90° is attributed to the pattern of the individual elements of the array while
the remaining ones are due to the formation of the array. For no phase difference between
the elements (8 = 0), the separation d must be equal or greater than half a wavelength
(d = A/2) in order for at least one null, due to the array, to occur.

6.3 N-ELEMENT LINEAR ARRAY: UNIFORM AMPLITUDE
AND SPACING

Now that the arraying of elements has been introduced and it was illustrated by the
two-element array, let us generalize the method to include N elements. Referring to the
geometry of Figure 6.5(a), let us assume that all the elements have identical amplitudes
but each succeeding element has a B progressive phase lead current excitation relative
to the preceding one (8 represents the phase by which the current in each element leads
the current of the preceding element). An array of identical elements all of identical
magnitude and each with a progressive phase is referred to as a uniform array. The
array factor can be obtained by considering the elements to be point sources. If the
actual elements are not isotropic sources, the total field can be formed by multiplying
the array factor of the isotropic sources by the field of a single element. This is the
pattern multiplication rule of (6-5), and it applies only for arrays of identical elements.
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The array factor is given by

AF = 1 +e+j(kdc050+;8) +e+j2(kdcos€+ﬁ) 4. +ej(N—1)(kdcosO+/3)

N
AF = Zej(n—])(kdcosé?—&-ﬁ)

n=1

which can be written as

N

AF =Y eitmhY

n=1

where Y = kdcos6 + 8
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Figure 6.4 Pattern multiplication of element, array factor, and total array patterns of a
two-element array of infinitesimal horizontal dipoles with (a) 8 = +90°, d = A /4.
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Figure 6.4 (b) B = —90°, d = 1/4 (continued).

Since the total array factor for the uniform array is a summation of exponentials,
it can be represented by the vector sum of N phasors each of unit amplitude and
progressive phase i relative to the previous one. Graphically this is illustrated by the
phasor diagram in Figure 6.5(b). It is apparent from the phasor diagram that the ampli-
tude and phase of the AF can be controlled in uniform arrays by properly selecting
the relative phase ¥ between the elements; in nonuniform arrays, the amplitude as
well as the phase can be used to control the formation and distribution of the total
array factor.

The array factor of (6-7) can also be expressed in an alternate, compact and closed
form whose functions and their distributions are more recognizable. This is accom-
plished as follows.

Multiplying both sides of (6-7) by e/, it can be written as

(AF)e/V = eV 4 e/ 4 I3 ... 4 N0V | (iNV (6-8)
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Figure 6.5 Far-field geometry and phasor diagram of N-element array of isotropic sources
positioned along the z-axis.

Subtracting (6-7) from (6-8) reduces to
AF(e’V — 1) = (=1 + /M) (6-9)

which can also be written as

eINV _ , I (N/DY _ =i (N/2)Y
AF — — QIlN=D/21y
iV — 1 I 1DV — =i/

"(3v)
sin{ —y
— /IN=D/21y 2 (6-10)
. (1
sin <§1//>
If the reference point is the physical center of the array, the array factor of (6-10)

reduces to
. (N
sin <E w)
AF=| ——~ (6-10a)

. (1
sin (EW)
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For small values of i, the above expression can be approximated by

sin (El//)

| Y

2

(6-10b)

The maximum value of (6-10a) or (6-10b) is equal to N. To normalize the array factors
so that the maximum value of each is equal to unity, (6-10a) and (6-10b) are written
in normalized form as (see Appendix II)

. (N
| sin (—w)
(AF)n =

2
TN (6-10c)
sin (Ew)

and (see Appendix I)

sin (ﬁ lﬁ)
AR, ~ | —2 /

4

(6-10d)

| =

To find the nulls of the array, (6-10c) or (6-10d) is set equal to zero. That is,

(M) com Ny, e [ (g
sin | — = —Ylomg =Fnmr =0, =cos ' | — | — I
2 o Vio=on = =0 2md N

n=123,... 6-11)
n# N,2N,3N,...with (6-10c)
For n = N,2N,3N, ..., (6-10c) attains its maximum values because it reduces to a

sin(0)/0 form. The values of n determine the order of the nulls (first, second, etc.). For
a zero to exist, the argument of the arccosine cannot exceed unity. Thus the number
of nulls that can exist will be a function of the element separation d and the phase
excitation difference .

The maximum values of (6-10c) occur when

1 A
% = 5(kd cos§ + B)lo=g, = £mmw =6, = cos™! [ﬁ(—ﬂ + 2mn):|
m=20,1,2,... (6-12)
The array factor of (6-10d) has only one maximum and occurs when m = 0 in (6-12).
That is,
0,y = cos™! M (6-13)
" 2rd

which is the observation angle that makes ¥ = 0.



N-ELEMENT LINEAR ARRAY: UNIFORM AMPLITUDE AND SPACING 295

The 3-dB point for the array factor of (6-10d) occurs when (see Appendix I)

N N

Ew = E(kdcos@ + B)lo=g, = £1.391

A 2.782
26, =cos ' | — -+ = 6-14
h = COs [an(ﬂ N)} (6-14)

which can also be written as

T A 2.782
0, = — —sin’'| — -+ = 6-14
n=n o [an( PE=YN )} (6-142)

For large values of d(d > A), it reduces to

S L 2782 614b
h—[a‘m<‘ﬁ T)} (0-146)

The half-power beamwidth ®, can be found once the angles of the first maximum
(6,,) and the half-power point (6,) are determined. For a symmetrical pattern

®h = 2|9m - Ghl (6_140)

For the array factor of (6-10d), there are secondary maxima (maxima of minor
lobes) which occur approximately when the numerator of (6-10d) attains its maximum
value. That is,

. (N .| N N
sin (EI//‘) = sin I:?(kd cosf + /3):| lop=g, = £1> E(kd cos 8 + B)lo=o,

2 1 A 2 1
~ + S+ nDeszcosfl — | -8 x S+ Tlt,
2 2md N

s=1,2,3,... (6-15)

which can also be written as

A 2 1
952%—8111_1{%[_,8:&( S};}‘_ >T[}}7 S=1,2,3,--. (6-153)

For large values of d(d > 1), it reduces to

A 2%+ 1
o~T - L g (2|, s=1.2.3,.. (6-15b)
2 2nd N
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The maximum of the first minor lobe of (6-10c) occurs approximately when (see
Appendix 1)

N =Y kdcoso + | L (" (6-16)
— = —(kd cos —p — -
2 2 o=t 2
or when
0, = cos™! o —B+ 3 (6-16a)
o 2md N
At that point, the magnitude of (6-10d) reduces to
sin (—w) )
AF), ~ | ———~ =—=0.212 6-17
(AP), ¥ - (6-17)
3’# =0,
s=1
which in dB is equal to
2
(AF), = 201log, (3—) = —13.46 dB (6-17a)
T

Thus the maximum of the first minor lobe of the array factor of (6-10d) is 13.46 dB
down from the maximum at the major lobe. More accurate expressions for the angle,
beamwidth, and magnitude of first minor lobe of the array factor of (6-10d) can be
obtained. These will be discussed in Chapter 12.

6.3.1 Broadside Array

In many applications it is desirable to have the maximum radiation of an array directed
normal to the axis of the array [broadside; 8y = 90° of Figure 6.5(a)]. To optimize the
design, the maxima of the single element and of the array factor should both be directed
toward 6y = 90°. The requirements of the single elements can be accomplished by the
judicious choice of the radiators, and those of the array factor by the proper separation
and excitation of the individual radiators. In this section, the requirements that allow
the array factor to “radiate” efficiently broadside will be developed.

Referring to (6-10c) or (6-10d), the first maximum of the array factor occurs when

Y =kdcos6+ =0 (6-18)

Since it is desired to have the first maximum directed toward 8y = 90°, then

Y =kdcosO + Blg—gpc = B =0 (6-18a)

Thus to have the maximum of the array factor of a uniform linear array directed
broadside to the axis of the array, it is necessary that all the elements have the same
phase excitation (in addition to the same amplitude excitation). The separation between
the elements can be of any value. To ensure that there are no principal maxima in other
directions, which are referred to as grating lobes, the separation between the elements
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should not be equal to multiples of a wavelength (d # nA,n =1,2,3...) when 8 = 0.
Ifd=ni,n=1,2,3,... and 8 =0, then

W =kdcosO +B|,_,,  =2wncosf|,_y. o = F2n7w (6-19)

B=0
n=123,...

This value of ¢ when substituted in (6-10c) makes the array factor attain its maximum
value. Thus for a uniform array with 8 =0 and d = nA, in addition to having the
maxima of the array factor directed broadside (6, = 90°) to the axis of the array,
there are additional maxima directed along the axis (6, = 0°, 180°) of the array (end-
fire radiation).

One of the objectives in many designs is to avoid multiple maxima, in addition to
the main maximum, which are referred to as grating lobes. Often it may be required
to select the largest spacing between the elements but with no grating lobes. To avoid
any grating lobe, the largest spacing between the elements should be less than one
wavelength (dp,x < ).

To illustrate the method, the three-dimensional array factor of a 10-element (N = 10)
uniform array with 8 = 0 and d = A /4 is shown plotted in Figure 6.6(a). A 90° angular
sector has been removed for better view of the pattern distribution in the elevation
plane. The only maximum occurs at broadside (6 = 90°). To form a comparison,
the three-dimensional pattern of the same array but with d = A is also plotted in
Figure 6.6(b). For this pattern, in addition to the maximum at 6, = 90°, there are
additional maxima directed toward 6, = 0°, 180°. The corresponding two-dimensional
patterns of Figures 6.6(a,b) are shown in Figure 6.7.

If the spacing between the elements is chosen between A < d < 2, then the max-
imum of Figure 6.6 toward 6y = 0° shifts toward the angular region 0° < 6y < 90°
while the maximum toward 6, = 180° shifts toward 90° < 6 < 180°. When d = 24,
there are maxima toward 0°, 60°, 90°, 120° and 180°.

In Tables 6.1 and 6.2 the expressions for the nulls, maxima, half-power points,
minor lobe maxima, and beamwidths for broadside arrays have been listed. They are
derived from (6-10c)—(6-16a).

6.3.2 Ordinary End-Fire Array

Instead of having the maximum radiation broadside to the axis of the array, it may
be desirable to direct it along the axis of the array (end-fire). As a matter of fact, it
may be necessary that it radiates toward only one direction (either 6, = 0° or 180° of
Figure 6.5).

To direct the first maximum toward 6y = 0°,

W = kdcosO + Blo—os =kd + =0 B = —kd (6-20a)

If the first maximum is desired toward 6, = 180°, then

V¥ =kdcosO + Blg=1s0° = —kd + p=0= = kd (6-20b)
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Figure 6.7 Array factor patterns of a 10-element uniform amplitude broadside array
(N =10,=0).

Thus end-fire radiation is accomplished when B = —kd (for 6y = 0°) or B = kd (for
6o = 180°).

If the element separation is d = A/2, end-fire radiation exists simultaneously in
both directions (8 = 0° and 6y = 180°). If the element spacing is a multiple of a
wavelength (d = nX, n = 1,2,3,...), then in addition to having end-fire radiation in
both directions, there also exist maxima in the broadside directions. Thus for d =
ni,n=1,2,3,... there exist four maxima; two in the broadside directions and two
along the axis of the array. To have only one end-fire maximum and to avoid any grating
lobes, the maximum spacing between the elements should be less than dm.x < A/2.

The three-dimensional radiation patterns of a 10-element (N = 10) array with d =
A/4, B = +kd are plotted in Figure 6.8. When f = —kd, the maximum is directed
along 6y = 0° and the three-dimensional pattern is shown in Figure 6.8(a). However,
when 8 = +kd, the maximum is oriented toward 6, = 180°, and the three-dimensional
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TABLE 6.1 Nulls, Maxima, Half-Power Points, and
Minor Lobe Maxima for Uniform Amplitude
Broadside Arrays

na
NULLS 0, =cos™' | ==
Nd
n=17273,...
n#N,2N,3N, ...
mA
MAXIMA O = cos™! <:|:7>
m=0,1,2,...
o, 1.391A
HALF-POWER 0, =~ cos +
POINTS mNd
md/a < 1
1 A (2541
MINOR LOBE 0, ~ cos™! | £—
MAXIMA 24\ N
s=1,2,3,...
md/a < 1

TABLE 6.2 Beamwidths for Uniform Amplitude
Broadside Arrays

FIRST-NULL O, =2|Z% —cos! (i)]
BEAMWIDTH 2 Nd
(FNBW)

M 1.3911

HALF-POWER ®p ~2|= —cos™! ( )]
BEAMWIDTH L2 nNd
(HPBW) rd/h < 1

[ 3A

FIRST SIDE LOBE ~ ©, ~ 2| Z — cos~! (—)}
BEAMWIDTH L2 24N
(FSLBW) rd/h < 1

pattern is shown in Figure 6.8(b). The two-dimensional patterns of Figures 6.8(a,b) are
shown in Figure 6.9. To form a comparison, the array factor of the same array (N = 10)
but with d = X and 8 = —kd has been calculated. Its pattern is identical to that of a
broadside array with N = 10, d = A, and it is shown plotted in Figure 6.7. It is seen
that there are four maxima; two broadside and two along the axis of the array.

The expressions for the nulls, maxima, half-power points, minor lobe maxima, and
beamwidths, as applied to ordinary end-fire arrays, are listed in Tables 6.3 and 6.4.

6.3.3 Phased (Scanning) Array

In the previous two sections it was shown how to direct the major radiation from an
array, by controlling the phase excitation between the elements, in directions normal
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(broadside) and along the axis (end fire) of the array. It is then logical to assume that
the maximum radiation can be oriented in any direction to form a scanning array. The
procedure is similar to that of the previous two sections.

Let us assume that the maximum radiation of the array is required to be oriented at
an angle 6y(0° < 6y < 180°). To accomplish this, the phase excitation 8 between the
elements must be adjusted so that

Y =kdcos@ + Blo—g, = kdcosby+ =0 = —kd cosb (6-21)

Thus by controlling the progressive phase difference between the elements, the maxi-
mum radiation can be squinted in any desired direction to form a scanning array. This
is the basic principle of electronic scanning phased array operation. Since in phased
array technology the scanning must be continuous, the system should be capable of
continuously varying the progressive phase between the elements. In practice, this
is accomplished electronically by the use of ferrite or diode phase shifters. For fer-
rite phase shifters, the phase shift is controlled by the magnetic field within the ferrite,
which in turn is controlled by the amount of current flowing through the wires wrapped
around the phase shifter.

For diode phase shifter using balanced, hybrid-coupled varactors, the actual phase
shift is controlled either by varying the analog bias dc voltage (typically 0—30 volts)
or by a digital command through a digital-to-analog (D/A) converter [1]-[3].

Shown in Figure 6.10 is an incremental switched-line PIN-diode phase shifter
[2]-[3]. This design is simple, straightforward, lightweight, and high speed. The
lines of lengths /; and [/, are switched on and off by controlling the bias of the PIN
diodes, using two single-pole double-throw switches, as illustrated in Figure 6.10. The
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Figure 6.9 Array factor patterns of a 10-element uniform amplitude end-fire array
(N =10,d = A/4).

differential phase shift, provided by switching on and off the two paths, is given by
Ap =kl —1) (6-21a)

By properly choosing /; and /5, and the operating frequency, the differential phase
shift (in degrees) provided by each incremental line phase shifter can be as small as
desired, and it determines the resolution of the phase shifter. The design of an entire
phase shifter typically utilizes several such incremental phase shifters to cover the entire
range (0 — 180°) of phase. However, the switched-line phase shifter, as well as many
other ones, are usually designed for binary phase shifts of A¢ = 180°, 90°, 45°,22.5°,
etc. [3]. There are other designs of PIN-diode phase shifters, including those that utilize
open-circuited stubs and reactive elements [2]. The basic designs of a phase shifter
utilizing PIN diodes are typically classified into three categories: switched line, loaded



N-ELEMENT LINEAR ARRAY: UNIFORM AMPLITUDE AND SPACING 303

TABLE 6.3 Nulls, Maxima, Half-Power Points, and
Minor Lobe Maxima for Uniform Amplitude
Ordinary End-Fire Arrays

ni
NULLS O, =cos ' |1 - —

Nd
n=123,...
n#N,2N,3N, ...

A
MAXIMA 6, = cos~! (1 - %)
m=20,1,2,...
» 1.391
HALF-POWER 0, =~ cos 1-
POINTS ndN
wd/r L 1
25 + DA
MINOR LOBE 0, ~ cos~! [1 _ w}
MAXIMA 2Nd
s=1,2,3,...
rd/r <L 1

TABLE 6.4 Beamwidths for Uniform Amplitude
Ordinary End-Fire Arrays

A
FIRST-NULL 0, =2cos! (1 - —d)
BEAMWIDTH N
(FNBW)
. 13912
HALF-POWER ®;, >~ 2cos 1-— y
BEAMWIDTH mdN
(HPBW) wd/n < 1
. 35
FIRST SIDE LOBE O, ~2c0s7! (1- 57
BEAMWIDTH Nd
(FSLBW) rd/h < 1
l 12 l
In Out
g 2
Y I ¥

Figure 6.10 Incremental switched-line phase shifter using PIN diodes. (source: D.M. Pozar,
Microwave Engineering, John Wiley & Sons, Inc. 2004).
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line, and reflection type [3]. The loaded-line phase shifter can be used for phase shifts
generally 45° or smaller. Phase shifters that utilize PIN diodes are not ideal switches
since the PIN diodes usually possess finite series resistance and reactance that can
contribute significant insertion loss if several of them are used. These phase shifters
can also be used as time-delay devices.

To demonstrate the principle of scanning, the three-dimensional radiation pattern of a
10-element array, with a separation of A /4 between the elements and with the maximum
squinted in the 6, = 60° direction, is plotted in Figure 6.11(a). The corresponding
two-dimensional pattern is shown in Figure 6.11(b).

The half-power beamwidth of the scanning array is obtained using (6-14) with
B = —kd cos 6y. Using the minus sign in the argument of the inverse cosine function
in (6-14) to represent one angle of the half-power beamwidth and the plus sign to
represent the other angle, then the total beamwidth is the difference between these two
angles and can be written as

IR B 2.782 R A 2.782
®; = cos —— | kd cos Gy — —— cos —— | kd cos Oy + ——
2md N 2mwd N

=cos™! [ cosh 2.782 cos™! { cos @y + 2.782 (6-22)

B *" Nkd * " Nkd

Since N = (L +d)/d, (6-22) reduces to [4]
©, = cos™! |:cos 6y — 0.443 j|
(L+d)
(6-22a)
—1
— cos cos 6y + 0.443
[ ’ (L + d>}

where L is the length of the array. Equation (6-22a) can also be used to compute the
half-power beamwidth of a broadside array. However, it is not valid for an end-fire
array. A plot of the half-power beamwidth (in degrees) as a function of the array
length is shown in Figure 6.12. These curves are valid for broadside, ordinary end-fire,
and scanning uniform arrays (constant magnitude but with progressive phase shift). In
a later section it will be shown that the curves of Figure 6.12 can be used, in con-
junction with a beam broadening factor [4], to compute the directivity of nonuniform
amplitude arrays.

6.3.4 Hansen-Woodyard End-Fire Array

The conditions for an ordinary end-fire array were discussed in Section 6.3.2. It was
concluded that the maximum radiation can be directed along the axis of the uniform
array by allowing the progressive phase shift 8 between elements to be equal to (6-20a)
for 6y = 0° and (6-20b) for 6y = 180°.

To enhance the directivity of an end-fire array without destroying any of the other
characteristics, Hansen and Woodyard [5] in 1938 proposed that the required phase
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Figure 6.11 Three- and two-dimensional array factor patterns of a 10-element uniform ampli-
tude scanning array (N = 10, 8 = —kd cos 6y, 0y = 60°,d = 1 /4).
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shift between closely spaced elements of a very long array’ should be

,3 kd + 2.92 (kd n T[) N f . in 6 Oo
= — — )~ - — r maximum in 6y = -
N N or maximu o (6-23a)

2.92
B=+ <kd + T) ~+ (kd + %) = for maximum in 6y = 180° (6-23b)

These requirements are known today as the Hansen-Woodyard conditions for end-fire
radiation. They lead to a larger directivity than the conditions given by (6-20a) and
(6-20b). It should be pointed out, however, that these conditions do not necessarily
vield the maximum possible directivity. In fact, the maximum may not even occur at
0o = 0° or 180°, its value found using (6-10c) or (6-10d) may not be unity, and the
side lobe level may not be —13.46 dB. Both of them, maxima and side lobe levels,
depend on the number of array elements, as will be illustrated.

In principle, the Hansen-Woodyard condition was derived for an infinitely long antenna with continuous dis-
tribution. It thus gives good results for very long, finite length discrete arrays with closely spaced elements.
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To realize the increase in directivity as a result of the Hansen-Woodyard conditions,
it is necessary that, in addition to the conditions of (6-23a) and (6-23b), || assumes
values of

For maximum radiation along 6y = 0°

T
|| = |kd cosb + Blo—=¢c = ~ and |Y¥| = |kdcosO + Blg=180° = 7 (6-24a)
For maximum radiation along 6y = 180°
T
|| = |kd cos 0 + Blo=130° = ~ and || = |kdcosO + Blg—pc = 7 (6-24b)

The condition of || = /N in (6-24a) or (6-24b) is realized by the use of (6-23a) or
(6-23b), respectively. Care must be exercised in meeting the requirement of |{/| >~ 7
for each array. For an array of N elements, the condition of || >~ & is satisfied by
using (6-23a) for = 0°, (6-23b) for & = 180°, and choosing for each a spacing of

a=(N=1\* 6-25
-(%%)5 (2

If the number of elements is large, (6-25) can be approximated by
d A (6-25a)
~ - -25a
4

Thus for a large uniform array, the Hansen-Woodyard condition can only yield an
improved directivity provided the spacing between the elements is approximately A /4.

This is also illustrated in Figure 6.13 where the 3-D field patterns of the ordinary
and the Hansen-Woodyard end-fire designs, for N = 10 and d = A /4, are placed next to
each other. It is apparent that the major lobe of the ordinary end-fire is wider (HPBW =
74°) than that of the Hansen-Woodyard (HPBW = 37°); thus, higher directivity for the
Hansen-Woodyard. However, the side lobe of the ordinary end-fire is lower (about
—13.5 dB) compared to that of the Hansen-Woodyard, which is about —8.9 dB. The
lower side lobe by the ordinary end-fire is not sufficient to offset the benefit from the
narrower beamwidth of the Hansen-Woodyard that leads to the higher directivity. A
comparison between the ordinary and Hansen-Woodyard end-fire array patterns is also
illustrated in Figure 10.16 for the design of a helical antenna.

To make the comparisons more meaningful, the directivities for each of the patterns
of Figures 6.13 have been calculated, using numerical integration, and it is found that
they are equal to 11 and 19, respectively. Thus the Hansen-Woodyard conditions realize
a 73% increase in directivity for this case.

As will be shown in Section 6.4 and listed in Table 6.8, the directivity of a Hansen-
Woodyard end-fire array is always approximately 1.805 times (or 2.56 dB) greater than
the directivity of an ordinary end-fire array. The increase in directivity of the pattern
in Figure 6.13 for the Hansen-Woodyard design is at the expense of an increase of
about 4 dB in side lobe level. Therefore in the design of an array, there is a trade-off
between directivity (or half-power beamwidth) and side lobe level.

To show that (6-23a) and (6-23b) do not lead to improved directivitie<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>